...
首页> 外文期刊>Microfluidics and nanofluidics >Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators
【24h】

Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators

机译:电自适应微流体,使用聚合物致动器主动调节通道的几何形状

获取原文
获取原文并翻译 | 示例
           

摘要

With the expanding role of microfluidics in biology and medicine, methodologies for on-chip fluid sample manipulation become increasingly important. While conventional methods of microfluidic actuation, such as pneumatic and piezoelectric valves, are well characterized and commonly used, they require bulky external setups and complex fabrication. To address the need for a simple microfluidic actuator, we introduce a hybrid device consisting of an electroactive polymer that controls the shape of a microfluidic channel with an applied bias voltage. The electro-adaptive microfluidic (EAM) device allowed tuning of fluidic resistances by up to 18.1 %. In addition, we have shown that the EAM device is able to clear microchannel blockages by actively expanding the channel cross section. Biocompatibility tests show the EAM device has little effect on cell viability within a voltage range and thus has the potential to be utilized in bio-microfluidic systems. All of these results indicate that this EAM device design may rind use in applications from cell sorting and trapping and self-clearing channels, to the reduction of lab-on-a-chip complexity via tunable channel geometries.
机译:随着微流体在生物学和医学中的作用不断扩大,芯片上流体样品处理的方法学变得越来越重要。尽管传统的微流体驱动方法(例如气动阀和压电阀)已得到很好的表征和普遍使用,但它们需要庞大的外部设置和复杂的制造过程。为了满足对简单的微流体致动器的需求,我们介绍了一种由电活性聚合物组成的混合设备,该聚合物可通过施加偏置电压来控制微流体通道的形状。电自适应微流体(EAM)装置可将流体阻力调节至18.1%。此外,我们已经表明,EAM设备能够通过积极扩大通道横截面来清除微通道阻塞。生物相容性测试表明,EAM设备在电压范围内对细胞生存力影响很小,因此具有在生物微流体系统中使用的潜力。所有这些结果表明,这种EAM器件设计可用于从细胞分选,捕获和自清除通道到通过可调通道几何结构降低芯片实验室复杂性的应用。

著录项

  • 来源
    《Microfluidics and nanofluidics》 |2013年第2期|345-358|共14页
  • 作者单位

    Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, 420 Westwood Plaza, 5121 Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600, USA;

    Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, 420 Westwood Plaza, 3121-H Engineering V, Los Angeles, CA 90095-1595, USA;

    Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, 420 Westwood Plaza, 5121 Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600, USA;

    Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, 420 Westwood Plaza, 5121 Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600, USA;

    Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, 420 Westwood Plaza, 3121-H Engineering V, Los Angeles, CA 90095-1595, USA;

    Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, 420 Westwood Plaza, 3121-H Engineering V, Los Angeles, CA 90095-1595, USA;

    Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, 420 Westwood Plaza, 5121 Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electro-adaptive microfluidics (EAMs); microchannel actuation; electroactive polymer; dielectric elastomer; polymer actuator; microelectromechanical systems (MEMS);

    机译:电适应性微流体(EAM);微通道驱动;电活性聚合物介电弹性体聚合物致动器微机电系统(MEMS);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号