首页> 外文期刊>Microfluidics and nanofluidics >Electric field effects on current-voltage relationships in microfluidic channels presenting multiple working electrodes in the weak-coupling limit
【24h】

Electric field effects on current-voltage relationships in microfluidic channels presenting multiple working electrodes in the weak-coupling limit

机译:电场对微流控通道中存在多个工作电极的微流通道中电流-电压关系的影响

获取原文
获取原文并翻译 | 示例
       

摘要

While electrochemical methods are well suited for lab-on-a-chip applications, reliably coupling multiple, electrode-controlled processes in a single microfluidic channel remains a considerable challenge, because the electric fields driving electrokinetic flow make it difficult to establish a precisely known potential at the working electrode(s). The challenge of coupling electrochemical detection with microchip electrophoresis is well known; however, the problem is general, arising in other multi-electrode arrangements with applications in enhanced detection and chemical processing. Here, we study the effects of induced electric fields on voltammetric behavior in a microchannel containing multiple in-channel electrodes, using a Fe(CN)_6~(3/4-) model system. When an electric field is induced by applying a cathodic potential at one in-channel electrode, the half-wave potential (E_(1/2)) for the oxidation of ferrocyanide at an adjacent electrode shifts to more negative potentials. The E_(1/2) value depends linearly on the electric field current at a separate in-channel electrode. The observed shift in E_(1/2) is quantitatively described by a model, which accounts for the change in solution potential caused by the iR drop along the length of the microchannel. The model, which reliably captures changes in electrode location and solution conductivity, apportions the electric field potential between iR drop and electrochemical potential components, enabling the study of microchannel electric field magnitudes at low applied potentials. In the system studied, the iR component of the electric field potential increases exponentially with applied current before reaching an asymptotic value near 80 % of the total applied potential. The methods described will aid in the development and interpretation of future microchip electrochemistry methods, particularly those that benefit from the coupling of electrokinetic and electrochemical phenomena at low voltages.
机译:尽管电化学方法非常适合于芯片实验室应用,但是在单个微流体通道中可靠地耦合多个电极控制的过程仍然是一个巨大的挑战,因为驱动电动流的电场使建立精确已知的电势变得困难在工作电极上。将电化学检测与微芯片电泳耦合起来的挑战是众所周知的。然而,这个问题是普遍的,出现在其他具有增强检测和化学处理功能的多电极装置中。在这里,我们使用Fe(CN)_6〜(3 / 4-)模型系统研究感应电场对包含多个通道内电极的微通道中伏安行为的影响。当通过在一个通道内电极上施加阴极电势来感应电场时,用于相邻电极上亚铁氰化物氧化的半波电势(E_(1/2))转变为更多的负电势。 E_(1/2)值线性依赖于单独的通道内电极上的电场电流。通过模型定量描述了观察到的E_(1/2)位移,该模型解释了由于iR沿微通道长度下降而引起的溶液电势变化。该模型可以可靠地捕获电极位置和溶液电导率的变化,在iR降和电化学电势分量之间分配电场电势,从而能够研究低施加电势下的微通道电场强度。在所研究的系统中,电场电位的iR分量在达到接近总施加电位的80%的渐近值之前,随施加电流呈指数增加。所描述的方法将有助于开发和解释未来的微芯片电化学方法,特别是那些受益于低电压下的电动和电化学现象耦合的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号