...
首页> 外文期刊>Microfluidics and nanofluidics >Fast and inexpensive method for the fabrication of transparent pressure-resistant microfluidic chips
【24h】

Fast and inexpensive method for the fabrication of transparent pressure-resistant microfluidic chips

机译:快速,廉价的透明耐压微流控芯片制造方法

获取原文
获取原文并翻译 | 示例
           

摘要

The recent rise of high-pressure applications in microfluidics has led to the development of different types of pressure-resistant microfluidic chips. For the most part, however, the fabrication methods require clean room facilities, as well as specific equipment and expertise. Furthermore, the resulting microfluidic chips are not always well suited to flow visualization and optical measurements. Herein, we present a method that allows rapid and inexpensive prototyping of optically transparent microfluidic chips that resist pressures of at least 200 bar. The fabrication method is based on UV-curable off-stoichiometry thiol-ene epoxy (OSTE+) polymer, which is chemically bonded to glass. The reliability of the device was verified by pressure tests using CO2, showing resistance without failure up to at least 200 bar at ambient temperature. The microchips also resisted operation at high pressure for several hours at a temperature of 40 degrees C. These results show that the polymer structure and the chemical bond with the glass are not affected by high-pressure CO2. Opportunities for flow visualization are illustrated by high-pressure two-phase flow shadowgraphy experiments. These microfluidic chips are of specific interest for use with supercritical CO2 and for optical characterization of phase transitions and multiphase flow under near-critical and critical CO2 conditions.
机译:微流体中高压应用的最新兴起导致了不同类型的耐压微流体芯片的开发。然而,在大多数情况下,制造方法需要洁净室设施以及特定的设备和专业知识。此外,所得的微流体芯片并不总是非常适合于流动可视化和光学测量。本文中,我们提出了一种方法,该方法可以快速,廉价地制作可抵抗至少200 bar压力的光学透明微流体芯片的原型。该制造方法基于与玻璃化学键合的可紫外线固化的非化学计量硫醇-环氧(OSTE +)聚合物。该设备的可靠性通过使用CO2进行的压力测试得到了验证,在环境温度下显示出至少200 bar的无故障电阻。该微芯片还抵抗了在40摄氏度的高温下运行数小时的结果。这些结果表明,聚合物结构和与玻璃的化学键不受高压CO2的影响。通过高压两相流影线照相实验说明了流动可视化的机会。这些微流体芯片特别适合与超临界CO2一起使用,以及在接近临界和临界CO2的条件下光学表征相变和多相流的特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号