首页> 外文期刊>Microfluidics and nanofluidics >Experimental and theoretical investigation of a low-Reynolds-number flow through deformable shallow microchannels with ultra-low height-to-width aspect ratios
【24h】

Experimental and theoretical investigation of a low-Reynolds-number flow through deformable shallow microchannels with ultra-low height-to-width aspect ratios

机译:低雷诺数流经可变形浅微通道的超低纵横比的实验和理论研究

获取原文
获取原文并翻译 | 示例
       

摘要

The emerging field of deformable microfluidics widely employed in the Lab-on-a-Chip and MEMS communities offers an opportunity to study a relatively under-examined physics. The main objective of this work is to provide a deeper insight into the underlying coupled fluid-solid interactions of a low-Reynolds-number, i.e. Re similar to O(10(-2)-10(+1)), fluid flow through a shallow deformable microchannel with ultra-low height-to-width-ratios, i.e. O(10(-3)). The fabricated deformable microchannels of several microns in height and few millimeters in width, whose aspect ratio is about two orders of magnitude smaller than that of the previous reports, allow us to investigate the fluid flow characteristics spanning a variety of distinct regimes from small wall deflections, where the deformable microchannel resembles its corresponding rigid one, to wall deflections much larger than the original height, where the height-independent characteristic behavior emerges. The effects of the microchannel geometry, membrane properties, and pressure difference across the channel are represented by a lumped variable called flexibility parameter. Under the same pressure drop across different channels, any difference in their geometries is reflected into the flexibility parameter of the channels, which can potentially cause the devices to operate under distinct regimes of the fluid-solid characteristics. For a fabricated microchannel with given membrane properties and channel geometry, on the other hand, a sufficiently large change in the applied pressure difference can alter the flow-structure behavior from one characteristic regime to another. By appropriately introducing the flexibility parameter and the dimensionless volumetric flow rate, a master curve is found for the fluid flow through any long and shallow deformable microchannel. A criterion is also suggested for determining whether the coupled or decoupled fluid-solid mechanics should be considered.
机译:在芯片实验室和MEMS社区中广泛使用的可变形微流体领域的新兴领域为研究相对未被充分研究的物理学提供了机会。这项工作的主要目的是提供对低雷诺数(即Re类似于O(10(-2)-10(+1)))的基本流体-固体相互作用的更深入的了解,具有超低的高宽比(即O(10(-3)))的浅变形微通道。所制造的可变形微通道的高度为几微米,宽度为几毫米,其长宽比比以前的报告要小两个数量级,这使我们能够研究从小壁挠度跨越各种不同状态的流体流动特性。 ,其中可变形的微通道类似于其相应的刚性通道,其壁挠度比原始高度大得多,原始高度出现了与高度无关的特征行为。微通道几何形状,膜特性和整个通道上的压差的影响由称为柔性参数的集总变量表示。在不同通道上的相同压降下,其几何形状的任何差异都会反映到通道的柔韧性参数中,这有可能导致设备在不同的流固特性下运行。另一方面,对于具有给定的膜特性和通道几何形状的微通道,施加的压力差的足够大的变化可以将流动结构的行为从一种特征状态转变为另一种特征状态。通过适当地引入挠性参数和无量纲的体积流量,可以找到通过任何长而浅的可变形微通道的流体流量的主曲线。还提出了确定是否应考虑耦合或分离的流固力学的标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号