...
首页> 外文期刊>Micro & nano letters >Influence of interface wettability on normal and explosive boiling of ultra-thin liquid films on a heated substrate in nanoscale: a molecular dynamics study
【24h】

Influence of interface wettability on normal and explosive boiling of ultra-thin liquid films on a heated substrate in nanoscale: a molecular dynamics study

机译:界面润湿性对加热后的纳米基板上超薄液膜正常沸腾和爆炸沸腾的影响:分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Wettability, as one of the important properties of solid surface, may influence heat and mass transfer in boiling process. Molecular dynamics method is employed to investigate the effects of wettability on normal and explosive boiling of ultra-thin liquid argon film absorbed on a heated solid aluminium surface in a confined space in present work. The initial three-phase molecular system is comprised of solid aluminium wall, liquid argon and vapour argon and is run for three different solid-liquid interfacial wettability (lyophilic, lyophobic and neutral surfaces), which achieves a balance at 90 K. After equilibrium period, two different jump temperatures degree, 150 and 350 K, are set on heat source layers separately to characterise the boiling phenomena, namely, low-temperature degree for normal boiling and high-temperature degree for explosive boiling in which temperature of solid wall is far beyond the critical temperature of liquid argon. The simulation results indicate that the wetting condition of solid-liquid interfacial surface have significant effects on both cases of boiling phenomena. Furthermore, the heat transfer rate with good wettability (lyophilic) is much higher than bad wettability (lyophobic) with same jump temperature degree.
机译:作为固体表面的重要特性之一,润湿性可能会影响沸腾过程中的热量和质量传递。在目前的工作中,采用分子动力学方法研究了润湿性对在有限空间中加热的固态铝表面上吸收的超薄液态氩膜的正常和爆炸沸腾的影响。最初的三相分子系统由固体铝壁,液氩和蒸气氩组成,并针对三种不同的固液界面润湿性(亲液,疏液和中性表面)运行,在90 K时达到平衡。平衡期后分别在热源层上设置两个不同的跳跃温度等级150和350 K,以表征沸腾现象,即,固态壁温度远高于常规沸腾的低温度和爆炸沸腾的高温度超过液态氩的临界温度。模拟结果表明,固液界面表面的润湿条件对两种沸腾现象均具有显着影响。此外,具有良好润湿性(亲液性)的传热速率远高于具有相同跳跃温度度的不良润湿性(疏液性)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号