首页> 外文期刊>Metallurgical and Materials Transactions A >Prediction of Forming Limit Diagrams in Sheet Metals Using Different Yield Criteria
【24h】

Prediction of Forming Limit Diagrams in Sheet Metals Using Different Yield Criteria

机译:使用不同屈服准则的钣金成形极限图预测

获取原文
获取原文并翻译 | 示例
           

摘要

Based on the analysis proposed by Jones and Gillis (JG), forming limit diagrams (FLDs) are calculated from idealization of the sheet deformation into three stages: (I) homogenous deformation up to maximum load, (II) deformation localization under constant load, and (III) local necking with a precipitous drop in load. A constant cross-head speed is assumed in the deformation program for the first time. This means that the logarithmic strain rate varies during deformation, while in all previous works, the strain rate is assumed to be constant. In the calculation, three yield criteria including Hill’s 1948 quadratic criterion, Hill’s 1979 nonquadratic criterion, and Hosford’s 1979 criterion are used. Using these yield criteria and the JG model, the effects of material parameters such as strain hardening, strain-rate sensitivity, and plastic anisotropy on the shape and level of the forming limit curves are studied. In addition, the capability of the JG model to predict the limit strains is demonstrated through comparison of calculated results with experimental data for interstitial-free (IF) steel and aluminum alloys 2036-T4, 3003-O, 5052-O, and 8014-O. It is observed that while the model predicts the FLDs of 2036-T4 and 5052-O more closely, it overestimates the forming limit strains for IF steel, 3003-O, and 8014-O aluminum alloys. It is concluded that the accuracy of the prediction depends on the measured mechanical properties of the material, the applied yield criterion, and the method of strain measurement, which determines how the FLDs are passed through different points. For those cases in which the predicted FLD is above the experimental one, care must be taken not to use the models for industrial purposes.
机译:根据Jones和Gillis(JG)提出的分析,从板变形的理想化分为三个阶段来计算成形极限图(FLD):( I)均匀变形直至最大载荷;(II)恒定载荷下的变形局部化; (III)局部颈缩,负荷急剧下降。变形程序中首次假定十字头速度恒定。这意味着对数应变率在变形过程中会发生变化,而在所有先前的工作中,应变率都假定为恒定。在计算中,使用了三个产量标准,包括希尔的1948年二次标准,希尔的1979年非二次标准和霍斯福德的1979年标准。使用这些屈服准则和JG模型,研究了材料参数(例如应变硬化,应变速率敏感性和塑性各向异性)对成形极限曲线的形状和水平的影响。此外,通过将无间隙(IF)钢和铝合金2036-T4、3003-O,5052-O和8014-T的计算结果与实验数据进行比较,证明了JG模型预测极限应变的能力。哦可以观察到,虽然该模型更紧密地预测了2036-T4和5052-O的FLD,但它高估了IF钢,3003-O和8014-O铝合金的成形极限应变。结论是,预测的准确性取决于所测量材料的机械性能,所应用的屈服准则和应变测量方法,这确定了FLD如何通过不同点。对于那些预测的FLD高于实验值的情况,必须注意不要将模型用于工业目的。

著录项

  • 来源
    《Metallurgical and Materials Transactions A》 |2007年第9期|2040-2052|共13页
  • 作者

    H. Noori; R. Mahmudi;

  • 作者单位

    School of Metallurgical and Materials Engineering University of Tehran Tehran Iran;

    School of Metallurgical and Materials Engineering University of Tehran Tehran Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号