首页> 外文期刊>Metallurgical and Materials Transactions A >Morphology and Kinetics of Interfacial Layer Formation during Continuous Hot-Dip Galvanizing and Galvannealing
【24h】

Morphology and Kinetics of Interfacial Layer Formation during Continuous Hot-Dip Galvanizing and Galvannealing

机译:连续热浸镀锌和热镀锌过程中界面层形成的形态和动力学

获取原文
获取原文并翻译 | 示例
       

摘要

A galvanizing simulator with rapid spot cooling was used to obtain a well-characterized reaction times as short as 2 seconds in order to study the short-time microstructural development and kinetics of the galvanizing and galvannealing interfacial reaction layer. It was determined that the incubation and nucleation events of the interfacial layer formation were completed by the 2-second reaction time in all cases. For a 0.20 wt pct dissolved Al bath, FeAl3 nucleates and grows during the initial stages of interfacial layer formation followed by Fe2Al5Zn X formation by diffusion-controlled transformation and growth. The final microstructure of the interfacial layer consisted of Fe2Al5Zn X in a two-layer arrangement comprising a fine-grained, compact lower layer with a coarser, noncompact upper layer. The Al content of the interfacial layer increased with reaction time and reaction temperature. Both of the Fe-Al phases formed exhibited a strong preferential crystallographic orientation with respect to the substrate surface. The evolution of the interfacial layer formed in a 0.13 wt pct dissolved Al bath was the result of competing processes. Fe-Al phases formed and grew during the reaction times explored, per the preceding mechanism. However, Fe-Zn phases also nucleated and grew during the reaction times explored via the process of inhibition breakdown, with these phases dominating the interfacial layer microstructures at longer reaction times. In this case, the Al content of the interfacial layer increased for all reaction times explored, but decreased with increasing reaction temperature, due to the more rapid initiation of inhibition breakdown. A model to describe the interfacial layer growth kinetics as a function of reaction time, bath temperature, and inhibition layer microstructure for the case of the 0.20 wt pct dissolved Al bath was proposed. It indicated that the development of microstructure of the interfacial layer had significant influence on the effective diffusion coefficient and growth rate of this layer.
机译:为了研究镀锌和镀锌和界面退火反应层的短时显微组织发展和动力学,使用了具有快速点冷却的镀锌模拟器来获得特征化的反应时间,该反应时间短至2秒。可以确定,在所有情况下,界面层形成的孵育和成核过程均在2秒的反应时间内完成。对于0.20 wt%pct的溶解铝浴,FeAl3 形核并在界面层形成的初始阶段生长,然后通过扩散控制的相变和扩散过程形成Fe2 Al5 Zn X 。增长。界面层的最终微观结构由两层结构的Fe2 Al5 Zn X 组成,包括细颗粒的致密下层和较粗糙的非致密上层。界面层的Al含量随着反应时间和反应温度的升高而增加。形成的两个Fe-Al相均相对于基板表面表现出强的优先结晶学取向。在0.13 wt%的溶解铝浴中形成的界面层的演变是竞争过程的结果。根据前述机理,在探索的反应时间内形成了Fe-Al相并使其生长。然而,在通过抑制破坏过程探索的反应时间中,Fe-Zn相也成核并生长,这些相在较长的反应时间主导界面层的微观结构。在这种情况下,界面层的Al含量在所有探索的反应时间内均增加,但由于抑制击穿的更快启动而随反应温度的升高而降低。提出了一个模型来描述界面层生长动力学随反应时间,熔池温度和抑制层微观结构的变化情况(对于0.20 wt%pct溶解的Al熔池)。结果表明,界面层微观结构的发展对界面层的有效扩散系数和生长速率具有重要影响。

著录项

  • 来源
    《Metallurgical and Materials Transactions A》 |2008年第9期|2128-2142|共15页
  • 作者单位

    McMaster Steel Research Centre McMaster University Hamilton ON L8S4L7 Canada;

    McMaster Steel Research Centre McMaster University Hamilton ON L8S4L7 Canada;

    McMaster Steel Research Centre McMaster University Hamilton ON L8S4L7 Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号