首页> 外文期刊>Metallurgical and Materials Transactions A >A Model for High-Temperature Pitting Corrosion in Nickel-Based Alloys Involving Internal Precipitation of Carbides, Oxides, and Graphite
【24h】

A Model for High-Temperature Pitting Corrosion in Nickel-Based Alloys Involving Internal Precipitation of Carbides, Oxides, and Graphite

机译:涉及碳化物,氧化物和石墨内部沉淀的镍基合金的高温点蚀模型

获取原文
获取原文并翻译 | 示例
           

摘要

The present investigation is concerned with fundamental studies of the mechanisms of pitting corrosion in the Ni-based alloys 602 and 693, following long-term exposure to syngas at 540 °C and a 35-bar total pressure. The 4-years’ plant-exposed alloys were examined using synchrotron X-ray diffraction (XRD) in combination with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is concluded that the pitting corrosion attacks start when carbon diffuses into the bulk of the alloys following the breakdown of the protective Cr2O3-Al2O3 surface oxide layer. During the incubation period, this oxide layer provides an effective barrier against carbon intrusion by virtue of its ability to restore cracks and flaws through diffusion. The corrosion pits then grow by a process of internal carburization and oxidation, in which carbides, oxides, and graphite form separately within an approximately 30-μm-thick belt in front of the pits (referred to as the white zone). In particular, the oxidation of the internal Cr3C2 carbides occurring close to the white zone/pit interface is associated with large volume changes. This volume expansion results in the buildup of high mechanical stresses within the white zone and, eventually, to the complete disintegration of the original alloy matrices into a layered pit microstructure consisting of Ni + Fe and Cr2O3 + Al2O3 + graphite. The observed microstructural changes have been rationalized through detailed modeling of the physical reactions involved, leading to the development of new and comprehensive models for high-temperature pitting corrosion in Ni-based alloys.
机译:本研究涉及镍基合金602和693的点蚀腐蚀机理的基础研究,该过程是在540°C和35 bar的总压力下长期暴露于合成气之后。使用同步辐射X射线衍射(XRD)结合扫描电子显微镜(SEM)和透射电子显微镜(TEM)对4年植物暴露的合金进行了检查。结论是,随着保护性Cr2 O3 -Al2 O3 表面氧化物层的分解,当碳扩散到大部分合金中时,点蚀开始。在孵育期间,该氧化层凭借其通过扩散恢复裂纹和缺陷的能力提供了有效的阻隔碳侵入的屏障。腐蚀坑然后通过内部渗碳和氧化过程而生长,其中碳化物,氧化物和石墨分别在腐蚀坑前面约30μm的厚度带内形成(称为白色区域)。特别是,内部Cr3 C2 碳化物靠近白色区域/凹坑界面发生的氧化与大体积变化有关。这种体积膨胀导致在白色区域内形成较高的机械应力,并最终使原始合金基体完全分解成由Ni + Fe和Cr2 O3 +组成的层状坑微结构。 Al2 O3 +石墨。通过对涉及的物理反应进行详细建模,可以合理地观察到微观结构的变化,从而开发出了针对镍基合金的高温点蚀的新的综合模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号