首页> 外文期刊>Metallurgical and Materials Transactions A >Experimental Investigation of Magnesium-Base Nanocomposite Produced by Friction Stir Processing: Effects of Particle Types and Number of Friction Stir Processing Passes
【24h】

Experimental Investigation of Magnesium-Base Nanocomposite Produced by Friction Stir Processing: Effects of Particle Types and Number of Friction Stir Processing Passes

机译:搅拌摩擦生产镁基纳米复合材料的实验研究:颗粒类型和搅拌摩擦通过次数的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In this research, nanosized SiC and Al2O3 particles were added to as-cast AZ91 magnesium alloy, and surface nanocomposite layers with ultrafine-grained structure were produced via friction stir processing (FSP). Effects of reinforcing particle types and FSP pass number on the powder distribution pattern, microstructure, microhardness, and on tensile and wear properties of the developed surfaces were investigated. Results show that the created nanocomposite layer by SiC particles exhibits a microstructure with smaller grains and higher hardness, strength, and elongation compared to the layer by Al2O3 particles. SiC particles do not stick together and are distributed separately in the AZ91 matrix; however, distribution of SiC particles is not uniform in all parts of the stirred zone (SZ), which causes heterogeneity in microstructure, hardness, and wear mechanism of the layer. Al2O3 particles are agglomerated in the different points of matrix and create alumina clusters. However, distribution of Al2O3 clusters in all parts of the SZ is uniform and results in a uniform microstructure. In the specimen produced by one-pass FSP and SiC particles, the wear mechanism changes in different zones of SZ due to the nonuniform distribution of particles. However, in the specimen produced by Al2O3 particles, the wear mechanism in all parts of the SZ is the same and, in addition to the abrasive wear, delamination also occurs. Increasing FSP pass number results in improved distribution of particles, finer grains, and higher hardness, strength, elongation, and wear resistance.
机译:在这项研究中,将纳米尺寸的SiC和Al 2 O 3 颗粒添加到铸态AZ91镁合金中,并通过搅拌摩擦产生具有超细晶结构的表面纳米复合层。处理(FSP)。研究了补强颗粒类型和FSP通过次数对粉末分布模式,显微组织,显微硬度以及对发达表面的拉伸和磨损性能的影响。结果表明,与Al 2 O 3 颗粒相比,SiC颗粒形成的纳米复合材料层具有较小的晶粒组织和更高的硬度,强度和伸长率。 SiC颗粒不会粘在一起,而是分别分布在AZ91基体中。但是,SiC颗粒在搅拌区(SZ)的所有部分分布都不均匀,这会导致层的微观结构,硬度和磨损机理不均匀。 Al 2 O 3 颗粒在基质的不同点发生团聚,形成氧化铝簇。然而,Al 2 O 3 团簇在深圳特区的所有部分均是均匀分布的,并导致均匀的微观结构。在单程FSP和SiC颗粒产生的样品中,由于颗粒的不均匀分布,磨损机理在SZ的不同区域发生了变化。但是,在由Al 2 O 3 颗粒产生的样品中,SZ各个部分的磨损机理是相同的,并且除了磨料磨损外,还会发生分层发生。 FSP通过次数的增加会改善颗粒的分布,更细的晶粒以及更高的硬度,强度,伸长率和耐磨性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号