首页> 外文期刊>Metallurgical and Materials Transactions A >Anomalous Fatigue Behavior and Fatigue-Induced Grain Growth in Nanocrystalline Nickel Alloys
【24h】

Anomalous Fatigue Behavior and Fatigue-Induced Grain Growth in Nanocrystalline Nickel Alloys

机译:纳米晶镍合金的异常疲劳行为和疲劳诱导晶粒长大

获取原文
获取原文并翻译 | 示例
           

摘要

Fatigue failure due to repetitive loading of metallic devices is a pervasive engineering concern. The present work reveals extraordinary fatigue resistance in nanocrystalline (NC) alloys, which appears to be associated with the small (<100 nm) grain size inhibiting traditional cyclic damage processes. In this study, we examine the fatigue performance of three electrodeposited NC Ni-based metals: Ni, Ni-0.5Mn, and Ni-22Fe (PERMALLOY). When subjected to fatigue stresses at and above the tensile yield strength where conventional coarse-grained (CG) counterparts undergo low-cycle fatigue failure (107 cycles to failure). Postmortem examinations show that failed samples contain an aggregate of coarsened grains at the crack initiation site. The experimental data and accompanying microscopy suggest that the NC matrix undergoes abnormal grain growth during cyclic loading, allowing dislocation activity to persist over length scales necessary to initiate a fatigue crack by traditional fatigue mechanisms. Thus, the present observations demonstrate anomalous fatigue behavior in two regards: (1) quantitatively anomalous when considering the extremely high stress levels needed to drive fatigue failure and (2) mechanistically anomalous in light of the grain growth process that appears to be a necessary precursor to crack initiation.
机译:由于金属设备的重复加载而导致的疲劳失效是普遍的工程问题。本工作揭示了纳米晶体(NC)合金的非凡的抗疲劳性,这似乎与小(<100 nm)晶粒尺寸有关,抑制了传统的循环损伤过程。在这项研究中,我们检查了三种电沉积NC Ni基金属的疲劳性能:Ni,Ni-0.5Mn和Ni-22Fe(PERMALLOY)。当疲劳应力达到或超过拉伸屈服强度时,传统的粗粒(CG)对应物会经历低周疲劳失效(失效10 7 循环)。事后检查显示,失败的样品在裂纹萌生点处含有聚集的粗大晶粒。实验数据和随附的显微镜表明,NC基质在循环加载过程中会发生异常晶粒长大,从而使位错活动在通过传统疲劳机制引发疲劳裂纹所必需的长度范围内得以持续。因此,本观察结果从两个方面证明了异常的疲劳行为:(1)在考虑驱动疲劳破坏所需的极高应力水平时定量异常;(2)鉴于晶粒生长过程似乎是必要的先驱,因此在机械上异常破解启动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号