首页> 外文期刊>Metallurgical and Materials Transactions A >First-Principles Study on the Grain Boundary Embrittlement of Metals by Solute Segregation: Part II. Metal (Fe, Al, Cu)-Hydrogen (H) Systems
【24h】

First-Principles Study on the Grain Boundary Embrittlement of Metals by Solute Segregation: Part II. Metal (Fe, Al, Cu)-Hydrogen (H) Systems

机译:通过溶质偏析对金属的晶界脆化的第一性原理研究:第二部分。金属(铁,铝,铜)-氢(H)系统

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The microscopic mechanism of grain boundary (GB) embrittlement in metals by hydrogen segregation (trapping) has been not well understood for many years. From first-principles calculations, we show here that the calculated cohesive energy of bcc Fe Σ3(111) and fcc Al(Cu) Σ5(012) symmetrical tilt GBs can be significantly reduced if many hydrogen atoms segregate at the GBs. This indicates that the reduction of the cohesive energy of the GB may cause the hydrogen-induced GB embrittlement in Fe, Al, and Cu. Considering the “mobile” effect of hydrogen during fracture, especially for the Fe system, more hydrogen atoms coming from solid solution state can segregate on the gradually formed two fracture surfaces and reduce further the cohesive energy. We suggest a new idea about the upper and lower critical stresses observed in the constant-load test of hydrogen-induced delayed fracture in high-strength steels; the upper critical stress is determined by the amount (density) of “immobile” hydrogen atoms segregated at the GB before fracture, and the lower critical stress is determined by the total amount (density) of immobile and mobile hydrogen atoms, the latter of which segregate on the two fracture surfaces during fracture.
机译:多年以来,人们对氢原子偏析(捕获)使金属中晶界(GB)脆化的微观机理还不甚了解。从第一性原理计算中,我们表明,如果许多氢原子在GBs处偏析,则bcc FeΣ3(111)和fcc Al(Cu)Σ5(012)对称倾斜GBs的内聚能可以大大降低。这表明GB的内聚能的降低可能引起氢诱导的GB在Fe,Al和Cu中的脆化。考虑到断裂过程中氢的“移动”效应,特别是对于Fe系统,更多的固溶态氢原子会偏析在逐渐形成的两个断裂表面上,并进一步降低内聚能。我们提出了一个关于在高强度钢的氢致延迟断裂的恒载荷试验中观察到的上下临界应力的新思路。较高的临界应力由断裂前在GB处分离的“固定”氢原子的数量(密度)确定,而较低的临界应力由固定和可移动的氢原子的总量(密度)确定,后者在断裂过程中偏析在两个断裂面上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号