...
首页> 外文期刊>Mechatronics, IEEE/ASME Transactions on >Design and Implementation of a New Six-DOF Maglev Positioner With a Fluid Bearing
【24h】

Design and Implementation of a New Six-DOF Maglev Positioner With a Fluid Bearing

机译:新型带流体轴承的六自由度磁悬浮定位器的设计与实现

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new six degrees-of-freedom (6-DOF) electromagnetic precision positioner, made of a hybrid mechanism utilizing both a magnetic driving force and the uplifting force of the fluid, for which a new structure, the electromagnetic actuator, and an effective controller have been developed. The concept of the mechanism design involves not only the magnetic driving mechanism, but also the fluid buoyancy and damping properties, which help to counterbalance the weight of the platen so as to achieve a very low steady-state power consumption. The four goals of the new system design include the following: 1) to have a large range of motion (at the mm level); 2) to achieve precision positioning; 3) to design a compact but low-cost mechanism; and 4) to achieve low power consumption. In this system, there are a total of eight permanent magnets (PMs) attached to the movable carrier, and eight electromagnetic coils appropriately mounted on a fixed base. After exploring the characteristics of the magnetic forces between PMs and electromagnetic coils, the general 6-DOF dynamic model of this system is derived and analyzed. Then, because of the naturally unstable behavior and uncertainties of the underlying system, a robust adaptive sliding-mode controller is proposed to guarantee system stability for both regulation and tracking tasks. Finally, extensive experiments have been conducted to demonstrate the performance of the proposed system. The experimental results show that the range of motion is 3 mm × 3 mm × 4 mm, and the tracking error in each axis is kept to within 10 μm, which reaches the limit of our optical sensors. These experimental results demonstrate satisfactory performance of the positioner in terms of theoretical analysis and experimental results.
机译:本文提出了一种新型的六自由度(6-DOF)电磁精密定位器,它是由一种混合机构制成的,该混合机构同时利用了磁驱动力和流体的提升力,为此,需要一种新型结构,电磁致动器和已经开发出有效的控制器。机构设计的概念不仅涉及磁力驱动机构,还涉及流体的浮力和阻尼特性,这有助于平衡压板的重量,从而实现非常低的稳态功耗。新系统设计的四个目标包括:1)具有较大的运动范围(毫米级); 2)实现精确定位; 3)设计一个紧凑但低成本的机制; 4)实现低功耗。在该系统中,总共有八个永磁体(PM)连接到可移动载体,并且八个电磁线圈适当地安装在固定基座上。在探索了永磁体和电磁线圈之间的磁力特性之后,推导并分析了该系统的一般6自由度动力学模型。然后,由于底层系统的自然不稳定行为和不确定性,提出了一种鲁棒的自适应滑模控制器,以保证调节和跟踪任务的系统稳定性。最后,已经进行了广泛的实验以证明所提出系统的性能。实验结果表明,运动范围为3 mm×3 mm×4 mm,每个轴的跟踪误差均保持在10μm以内,达到了我们光学传感器的极限。这些实验结果从理论分析和实验结果证明了定位器的令人满意的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号