首页> 外文期刊>Mechatronics, IEEE/ASME Transactions on >Laser-Induced Thermocapillary Convective Flows: A New Approach for Noncontact Actuation at Microscale at the Fluid/Gas Interface
【24h】

Laser-Induced Thermocapillary Convective Flows: A New Approach for Noncontact Actuation at Microscale at the Fluid/Gas Interface

机译:激光诱导的热毛细对流:一种在流体/气体界面处进行微尺度非接触驱动的新方法

获取原文
获取原文并翻译 | 示例
       

摘要

This paper proposes a new actuation principle for noncontact actuation. Thermocapillary convection is a promising principle to manipulate particles at the fluid/gas interface. Compared with approaches based on natural and Marangoni convections, our approach uses thermocapillary convection generated by a laser heating the fluid from the top and not from the bottom. This has several advantages, the most relevant being that it does not depend on an hydrodynamic instability to onset the flow motion. Laser heating creates large localized thermal gradients that make the flow velocity fast and localized. Simulations show that flow velocities up to 8.5 mm/s can be obtained using as little power as 38 mW with a temperature increase as little as 4 °C. As a proof of concept, steel spherical particles of 500 μ m diameter are successfully displaced using this principle, which attain a mean maximal speed up to 4 mm/s. Also, 1000- μm-diameter steel spherical particles are displaced along a given trajectory using a manual control. These results first demonstrate the high potential of this new approach based on thermocapillary convection for controlled noncontact actuation at high speeds at microscale.
机译:本文提出了一种新的非接触式驱动原理。热毛细管对流是在流体/气体界面处操纵颗粒的有前途的原理。与基于自然对流和Marangoni对流的方法相比,我们的方法使用通过激光从顶部而非底部加热流体产生的热毛细管对流。这具有几个优点,最相关的是它不依赖于流体动力学的不稳定性来启动流动运动。激光加热会产生较大的局部热梯度,从而使流速快速且局部化。仿真表明,使用38 mW的低功率和低至4°C的温度,就可以达到8.5 mm / s的流速。作为概念证明,使用该原理成功地置换了直径为500μm的钢球形颗粒,其平均最大速度高达4 mm / s。同样,使用手动控制将直径为1000μm的钢球形颗粒沿着给定的轨迹移动。这些结果首先证明了这种基于热毛细对流的新方法在微尺度上高速控制非接触式致动的巨大潜力。

著录项

  • 来源
    《Mechatronics, IEEE/ASME Transactions on》 |2017年第2期|693-704|共12页
  • 作者单位

    Bio-, Electro, and Mechanical Systems Department, Ecole Polytechnique de Bruxelles, Universite Libre de Bruxelles, Bruxelles, Belgium;

    AS2M and Optics Departments, FEMTO-ST Institute, Université Bourgogne Franche-Comté, Université de Franche-Comté/CNRS/ENSMM, Besançon, France;

    AS2M and Optics Departments, FEMTO-ST Institute, Université Bourgogne Franche-Comté, Université de Franche-Comté/CNRS/ENSMM, Besançon, France;

    Bio-, Electro, and Mechanical Systems Department, Ecole Polytechnique de Bruxelles, Universite Libre de Bruxelles, Bruxelles, Belgium;

    AS2M and Optics Departments, FEMTO-ST Institute, Université Bourgogne Franche-Comté, Université de Franche-Comté/CNRS/ENSMM, Besançon, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Convection; Heating; Mathematical model; Surface tension; Force; Laser beams; Stress;

    机译:对流加热数学模型表面张力力激光束应力;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号