...
首页> 外文期刊>Mechanics of Materials >A model for predicting the damage and environmental degradation dependent life of SCS-6/Timetal 21S [0]_4 metal matrix composite
【24h】

A model for predicting the damage and environmental degradation dependent life of SCS-6/Timetal 21S [0]_4 metal matrix composite

机译:用于预测SCS-6 / Timetal 21S [0] _4金属基复合材料的损伤和环境退化相关寿命的模型

获取原文
获取原文并翻译 | 示例

摘要

A method is developed herein for predicting the life of a continuous fiber titanium metal matrix composite. As a part of the research effort, the titanium metal matrix composite, SCS-6/Timetal 21S [0]_4, has been fatigue tested at 482℃ and 650℃. Additional specimens have been environmentally degraded at 700℃ and then fatigued at 482℃ to failure. The research focuses on initial oxygen dissolution and its effect on the life of the material. The life--limiting physical mechanisms identified from the experiments are material inelasticity, surface embrittlement, and subsequent surface cracking, fiber/ma- trix debonding, fiber--bridging, and eventual fiber failure. A model incorporating all of these physical phenomena has been developed herein. The model utilizes the finite element method coupled with models for material inelasticity, surface embrittlement, and crack propagation. Material inelasticity is predicted using Bodner's unified viscoplastic model. Crack propagation is modelled via the inclusion of cohesive zones. Surface embrittlement is accounted for by degrading material properties. Both monotonic and fatigue loadings have been modelled at 482℃ and 650℃ for degraded and undegraded specimens. Results indicate that surface crack propagation rates are significantly slower when matrix viscoplasticity is included in the model instead of elasticity. Furthermore, surface cracking in environmentally degraded specimens enhances fiber stresses compared to undegraded specimens. This difference apparently leads to the premature failure of the degraded composite.
机译:本文开发了一种预测连续纤维钛金属基复合材料寿命的方法。作为研究工作的一部分,钛金属基复合材料SCS-6 / Timetal 21S [0] _4已在482℃和650℃下进行了疲劳测试。另外的标本在700℃会在环境中降解,然后在482℃会疲劳至破坏。该研究集中于初始的氧溶解及其对材料寿命的影响。从实验中确定的限制寿命的物理机制是材料的非弹性,表面脆化,随后的表面开裂,纤维/基体的脱粘,纤维桥接以及最终的纤维破坏。本文已经开发了包含所有这些物理现象的模型。该模型利用有限元方法和模型进行材料非弹性,表面脆化和裂纹扩展。使用Bodner统一的粘塑性模型预测材料的非弹性。裂纹扩展是通过包含粘性区域来建模的。表面脆化是通过降低材料性能来解决的。对于退化和未退化的试样,均已在482℃和650℃下模拟了单调和疲劳载荷。结果表明,当模型中包含基体粘塑性而不是弹性时,表面裂纹的传播速度明显变慢。此外,与未降解的样品相比,环境降解样品的表面开裂会增加纤维应力。这种差异显然导致降解的复合材料过早失效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号