首页> 外文期刊>Mechanics of materials >Microstructural Assessment of 316L Stainless Steel Using Infrared Thermography Based Measurement of Energy Dissipation Arising from Cyclic Loading
【24h】

Microstructural Assessment of 316L Stainless Steel Using Infrared Thermography Based Measurement of Energy Dissipation Arising from Cyclic Loading

机译:基于红外热法的316L不锈钢的微观结构评估测量循环载荷产生的能量耗散测量

获取原文
获取原文并翻译 | 示例
           

摘要

A procedure is developed that evaluates the energy dissipated from a material subject to cyclic loading and enables identification of the difference in material microstructure. It is demonstrated that the dissipated energy can be derived from specimens loaded in the elastic region using temperature measurements obtained by infrared thermography. To obtain accurate values of the small temperature changes resulting from the intrinsic dissipation below the yield point, a key part of the procedure is to eliminate the effect of external heat sources and sinks from the vicinity of the test specimen under investigation. To this end, a chamber was designed to minimise the external radiation whilst allowing the specimens to be cyclically loaded; the configuration of the chamber is described, alongside its integration into the procedure. A reference specimen was specifically introduced in the chamber to take into account the thermal exchanges between the specimen and the chamber environment. A data processing procedure, based on the thermomechanical heat diffusion equation, is applied to enable the dissipated energy to be derived from the temperature measurements. It is established that quantifying the amount of energy dissipation provides an opportunity to identify the material condition. The procedure is demonstrated on specimens made from 316L stainless steel containing a range of microstructures produced by different heat treatments. It is shown that the dissipative energy is dependent on the microstructure and that the dissipative source can be identified using the experimental procedure.
机译:开发了一种过程,其评估从受到循环加载的材料散发的能量,并能够识别材料微观结构的差异。结果证明,使用通过红外热成像获得的温度测量,可以从装载在弹性区域中的样本来源的散热能量。为了获得由于屈服点低于屈服点而产生的小温度变化的精确值,该方法的关键部分是消除外部热源的效果,并从调查中的测试样本附近汇。为此,设计腔室以最小化外部辐射,同时允许样品循环加载;将腔室的配置与其集成到过程中。在腔室中专门引入参考标本,以考虑样品和腔室环境之间的热交换。基于热机械热扩散方程的数据处理过程应用于使得能够从温度测量中衍生出耗散的能量。确定量化能量耗散量提供了识别材料条件的机会。在由316L不锈钢制成的样品上证明了该方法,该样品含有由不同热处理产生的微结构的一系列微观结构。结果表明,耗散能量取决于微观结构,并且可以使用实验程序识别耗散源。

著录项

  • 来源
    《Mechanics of materials》 |2020年第9期|103455.1-103455.15|共15页
  • 作者单位

    Univ Southampton Sch Engn Dept Mech Engn Southampton SO17 1BJ Hants England;

    Univ Bristol Sch Civil Aerosp & Mech Engn Dept Mech Engn Queens Bldg Bristol BS8 1TR Avon England;

    Univ Southampton Sch Engn Dept Mech Engn Southampton SO17 1BJ Hants England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号