...
首页> 外文期刊>Mechanics of materials >A micromechanical model for the grain size dependent super-elasticity degeneration of NiTi shape memory alloys
【24h】

A micromechanical model for the grain size dependent super-elasticity degeneration of NiTi shape memory alloys

机译:NiTi形状记忆合金晶粒尺寸相关的超弹性退化的微力学模型

获取原文
获取原文并翻译 | 示例

摘要

Recent experiments show that super-elasticity degeneration occurs during the cyclic deformation of poly-crystalline NiTi SMAs and the extent of such degeneration depends strongly on the grain size of the poly-crystalline aggregate. Thus, in this work, a micromechanical model is constructed to describe the grain size dependent super-elasticity degeneration of polycrystalline NiTi SMAs. The polycrystalline aggregate is modeled as a composite material, i.e., each grain-interior (GI) phase is assumed to be a spherical inclusion embedded in a matrix of grain-boundary (GB) phase. For GI phase, two inelastic deformation processes, i.e., martensite transformation and transformation induced plasticity, and their interaction are considered, simultaneously; for the GB phase, its plastic deformation is described by a unified visco-plastic model. To describe the interaction between the inclusion and matrix and calculate the macroscopic overall performances of the modeled composite material, a modified incremental Mori-Tanaka's homogenization method is proposed by introducing the Eshelby's tensor of a spherical inclusion embedded in a finite spherical domain and the affine tangent modulus and affine strain increment. Numerical algorithm is developed to implement the proposed micromechanical model. A new and simple affine linearization method is proposed to linearize the constitutive equations of GI and GB phases. The proposed micromechanical model is verified by comparing the simulated results with the corresponding experimental ones. It is shown that the grain size dependent super-elasticity degeneration of NiTi SMAs can be well captured. Moreover, the calculated results indicate that when the average grain size is large (160 nm), the super-elasticity degeneration originates from the interaction between the martensite transformation and dislocation slipping in GI phase; while, when the average grain size is small (160 nm), the super elasticity degeneration is dominated by the plastic deformation of GB phase and the stress redistribution between GI and GB phase.
机译:最近的实验表明,在多晶NiTi SMA的循环变形过程中会发生超弹性退化,这种退化的程度在很大程度上取决于多晶聚集体的晶粒尺寸。因此,在这项工作中,建立了一个微力学模型来描述多晶NiTi SMA的晶粒尺寸依赖性超弹性退化。将多晶聚集体建模为复合材料,即,假定每个晶粒内(GI)相为嵌入晶界(GB)相基质中的球形夹杂物。对于GI相,同时考虑了两个非弹性变形过程,即马氏体相变和相变引起的可塑性,以及它们的相互作用。对于GB相,其塑性变形用统一的粘塑性模型描述。为了描述夹杂物与基体之间的相互作用并计算建模复合材料的宏观整体性能,通过引入嵌入有限球形区域中的球形夹杂物的Eshelby张量和仿射切线,提出了一种改进的增量Mori-Tanaka均匀化方法。模量和仿射应变增量。开发了数值算法来实现所提出的微力学模型。提出了一种新的,简单的仿射线性化方法,将GI和GB相的本构方程线性化。通过将仿真结果与相应的实验结果进行比较,验证了所提出的微力学模型。结果表明,NiTi SMAs的晶粒尺寸依赖性超弹性退化可以被很好地捕获。此外,计算结果表明,当平均晶粒尺寸较大(> 160 nm)时,超弹性变质起因于马氏体转变与GI相中位错滑移之间的相互作用。而当平均晶粒尺寸较小(<160 nm)时,超弹性变性主要由GB相的塑性变形和GI与GB相之间的应力重新分布决定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号