首页> 外文期刊>Mechanical systems and signal processing >Nonlinear aeroelastic behavior of an airfoil with free-play in transonic flow
【24h】

Nonlinear aeroelastic behavior of an airfoil with free-play in transonic flow

机译:在跨音速流中具有自由游隙的翼型的非线性气动弹性行为

获取原文
获取原文并翻译 | 示例
           

摘要

An investigation has been made into the nonlinear aeroelastic behavior of an airfoil system with free-play nonlinear stiffness in transonic flow. Computational Fluid Dynamics (CFD) and Reduced Order Model (ROM) based on Euler and Navier-Stokes equations are implemented to calculate unsteady aerodynamic forces. Results show that the nonlinear aeroelastic system experiences various bifurcations with increasing Mach number. Regular subcritical bifurcations are observed in low Mach number region. Subsequently, complex Limit Cycle Oscillations (LCOs) and even non-periodic motions appear at specific airspeed regions. When the Mach number is increased above the freeze Mach number, regular sub-critical bifurcations occur again. Comparisons with inviscid solutions are used to identify and elaborate the effect of viscosity with the help of aeroelastic analysis techniques, including root locus, Single Degree of Freedom (SDOF) flutter and aerodynamic influence coefficient (AIC). For low Mach numbers in the transonic regime, the viscosity has little effect on the linear flutter characteristic because of limited influence on AIC, but a remarkable impact on the nonlinear dynamic behavior due to the sensitivity of the nonlinear structure. As the Mach number increases, the viscosity becomes significantly important due to the existence of shock-boundary layer interaction. It affects the unstable mechanism of linear flutter, impacts the aerodynamic center and hence the snap-through phenomenon, influences the AIC and consequently the nonlinear aeroelastic response. When the Mach number is increased further, the shock wave dominates the air flow and the viscosity is of minor importance.
机译:对跨音速流中具有自由非线性刚度的机翼系统的非线性气动弹性行为进行了研究。基于欧拉和纳维尔-斯托克斯方程的计算流体力学(CFD)和降阶模型(ROM)用于计算不稳定的空气动力。结果表明,随着马赫数的增加,非线性气动弹性系统经历了各种分叉。在低马赫数区域观察到规则的亚临界分叉。随后,复杂的极限循环振荡(LCO)甚至非周期性运动出现在特定的空速区域。当马赫数增加到高于冻结马赫数时,规则的次临界分叉会再次发生。与无粘性溶液的比较用于借助气动弹性分析技术(包括根轨迹,单自由度(SDOF)颤振和空气动力学影响系数(AIC))来识别和阐述粘度的影响。对于跨音速状态中的低马赫数,由于对AIC的影响有限,因此粘度对线性颤动特性的影响很小,但由于非线性结构的敏感性,其对非线性动力学行为的影响显着。随着马赫数的增加,由于冲击边界层相互作用的存在,粘度变得非常重要。它会影响线性颤振的不稳定机理,会影响空气动力中心,进而影响快速跳动现象,会影响AIC,进而影响非线性气动弹性响应。当马赫数进一步增加时,冲击波将主导气流,而粘度的重要性则微不足道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号