首页> 外文期刊>Materials Science & Engineering >Structure-properties relationships of cellular materials from biobased polyurethane foams
【24h】

Structure-properties relationships of cellular materials from biobased polyurethane foams

机译:Biobased聚氨酯泡沫细胞材料的结构性质关系

获取原文
获取原文并翻译 | 示例
       

摘要

The polyurethanes (PU) are a very versatile family of materials mainly obtained by combinations of polyols and polyisocyanates. Based on their annual worldwide production of around 20 million tons and a global market of $50 billion (2016), PUs rank 6th among all polymers. Through their value chain, PUs involve different players: (i) the chemists producing most of PUs raw materials, (ⅱ) the PUs producers from the raw materials, (ⅲ) the compounders/assemblers who formulate PUs into their final products, and finally (ⅳ) the end-users. Due to the multiplicity of their structures, PUs can be used in various forms and applications. Cellular materials are the largest part of this market (more than 60 %) with segments including the furniture, automotive, bedding, insulation, building or construction markets. Two main types of foam can be fabricated: (i) flexible with open cells, stress and tensile properties, e.g., furniture or bedding, and (ⅱ) rigid with closed cells, low thermal conductivity, low density and high dimensional stability mainly for thermal insulation, e.g., building industries. The formulation step significantly influences the microstructure or morphology of these cellular materials and impacts the final foam properties. Even if some partially biobased compounds (polyols) can be used, commercial PU cellular materials are till now mainly based on fossil resources. However, future materials will combine high performance with low environmental impact in order to fulfill societal expectations. In this way, new biobased compounds combining different fields such as biotech, chemistry, science and materials engineering are more and more used in complex formulations for renewable foams, leading to specific renewable macromolecular architectures. This review aims to highlight the main biobased components (polyols, polyisocyanates and additives) used in formulations for PU foams, in relation to the corresponding fabrications, morphologies and properties. The main renewable sources come from (mono and poly)sugars, oleo-chemistry, polyphenols (lignins, tannins ...), or different compounds from white biotech processes from agro-wastes ... The impact of these different components on material performances is discussed more particularly for rigid polyurethane foams. The structure-property relationships are analyzed with a scope on cellular morphology, mechanical, thermal properties, fire resistance, and insulation behavior. Finally, an analysis focus on future perspectives on biobased PU foams is conducted.
机译:聚氨酯(PU)是主要通过多元醇和多异氰酸酯组合获得的非常通用的材料。基于其全球每年的产量约为2000万吨,全球市场为500亿美元(2016年),脓液在所有聚合物中排名第6。通过他们的价值链,庞斯涉及不同的球员:(i)制造大多数Pus原材料的化学家(Ⅱ)从原料中的脓液生产商,(Ⅲ)将PUS与最终产品配制成脓液的复合机/装配商,最后(ⅳ)最终用户。由于其结构的多重性,PU可以以各种形式和应用使用。细胞材料是本市场最大的部分(超过60%),段包括家具,汽车,床上用品,绝缘,建筑或建筑市场。可以制造两种主要类型的泡沫:(i)柔性带开孔,应力和拉伸性能,例如家具或床上用品,(Ⅱ)刚性电池,导热性低,密度低,高尺寸稳定性主要用于热量绝缘,例如建筑行业。制剂步骤显着影响这些细胞材料的微观结构或形态,并影响最终的泡沫特性。即使可以使用一些部分生物化的化合物(多元醇),商业PU细胞材料也主要基于化石资源。然而,未来的材料将使高性能与环境影响低,以满足社会期望。通过这种方式,新的生物化化合物组合不同领域,如生物技术,化学,科学和材料工程,更越来越多地用于可再生泡沫的复杂配方中,导致特定的可再生大分子架构。本综述旨在突出在PU泡沫配方中使用的主要生物化组分(多元糖,多异氰酸酯和添加剂),与相应的制造,形态和性质相关。主要的可再生能源来自(单声道和聚)糖,油化学,多苯酚(Lignins,Tannins ...)或来自Agro-Wastes的白色生物技术方法的不同化合物......这些不同组分对材料性能的影响更特别地讨论刚性聚氨酯泡沫。分析结构性质关系,具有蜂窝形态,机械,热性能,耐火性和绝缘行为的范围。最后,对生物化PU泡沫的未来观点侧重于未来的观点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号