...
首页> 外文期刊>Materials science & engineering >Advancing nanograined/ultrafine-grained structures for metal implant technology: Interplay between grooving of nano/ultrafine grains and cellular response
【24h】

Advancing nanograined/ultrafine-grained structures for metal implant technology: Interplay between grooving of nano/ultrafine grains and cellular response

机译:推进用于金属植入技术的纳米/超细晶粒结构:纳米/超细晶粒的开槽与细胞反应之间的相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

Nanograined/ultrafine-grained (NG/UFG) metals provide surfaces that are different from conventional coarse-grained polycrystalline metals because of the high fraction of grain boundaries. In the context of osseointegration of metal implants, grooving of nanograins/ultrafine grains by electrochemical grooving is a potential approach to increase the biomechanical interlocking and anchorage with consequent enhancement of cellular response. The primary objective of the research described here is to advance science and technology of metal implants by making a relative comparison of osteoblast response of grain boundary grooved and planar NG/UFG surfaces. The NG/UFG substrates were obtained using an ingenious concept of controlled phase reversion and the grain boundaries were electrochemically treated to induce grooving of large fraction of grain boundaries of NG/UFG substrate. Experiments on the effect of grooving of grain boundaries of NG/UFG metal indicated that cell attachment, proliferation, viability, morphology, and spread are favorably modulated and significantly different from planar (non-grooved) NG/UFG substrates. Furthermore, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on electrochemically grooved NG/UFG substrate. These observations are indicative of accelerated response of cell-substrate interaction and activity. The differences in the cellular response of planar and grain boundary grooved NG/UFG surface are attributed to favorable surface topography that accelerates the cellular activity.
机译:纳米晶粒/超细晶粒(NG / UFG)金属提供的表面与常规的粗晶粒多晶金属不同,因为其晶界比例很高。在金属植入物的骨整合的背景下,通过电化学开槽对纳米颗粒/超细晶粒进行开槽是增加生物力学互锁和锚固并因此增强细胞反应的潜在方法。此处描述的研究的主要目的是通过对晶界开槽的和平坦的NG / UFG表面的成骨细胞响应进行相对比较来提高金属植入物的科学和技术。 NG / UFG基板是使用巧妙的控制相变概念获得的,并且对晶界进行了电化学处理,以诱导NG / UFG基板大部分晶界开槽。对NG / UFG金属的晶界开槽效果的实验表明,细胞附着,增殖,生存力,形态和铺展受到了良好的调节,与平面(非开槽)NG / UFG基材明显不同。此外,免疫荧光研究表明,与细胞外部区域中的肌动蛋白应激纤维相关联的更强的纽蛋白信号,以及在电化学开槽的NG / UFG基质上的细胞延伸。这些观察结果表明细胞-底物相互作用和活性的加速反应。平面和晶界开槽的NG / UFG表面的细胞响应的差异归因于有利的表面形貌,可加速细胞活性。

著录项

  • 来源
    《Materials science & engineering》 |2010年第7期|P.1050-1059|共10页
  • 作者单位

    Biomaterials and Biomedical Engineering Research Laboratory, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44730, Lafayette, LA 70504, USA;

    rnBiomaterials and Biomedical Engineering Research Laboratory, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44730, Lafayette, LA 70504, USA;

    rnBiomaterials and Biomedical Engineering Research Laboratory, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44730, Lafayette, LA 70504, USA;

    rnDepartment of Mechanical Engineering, The University of Oulu, P.O. Box 4200, 90014 Oulu, Finland;

    rnDepartment of Mechanical Engineering, The University of Oulu, P.O. Box 4200, 90014 Oulu, Finland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    nanostructured materials; phase-reversion; electrochemical grooving; stainless steel; cell attachment; molecular interaction;

    机译:纳米结构材料;相变电化学开槽不锈钢;细胞附着;分子相互作用;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号