...
首页> 外文期刊>Materials Science and Engineering. B, Solid-State Materials for Advanced Technology >Effects of compressive stress on the electronic states and atomic configurations of the Pt-H_2 defect in silicon
【24h】

Effects of compressive stress on the electronic states and atomic configurations of the Pt-H_2 defect in silicon

机译:压应力对硅中Pt-H_2缺陷电子态和原子构型的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We review our recent results and analyses of the effects of uniaxial compressive stress on the electronic states and atomic configurations of a platinum-dihydrogen (Pt-H_2) defect in Si, and discuss the results on the basis of the structural model that we proposed. We applied a technique of isothermal deep-level transient spectroscopy (IT-DLTS), combined with the application of uniaxial compressive stress. Our experiments showed that < 111 > and < 100 > stresses split the IT-DLTS peak of the Pt-H_2 defect into two components, and a < 110 > stress split it into three components. Such a splitting pattern and the observed intensity ratios of split components uniquely determined that the defect had C_(2v) symmetry, on which our structural model was based. We found that the electronic levels corresponding to split components varied linearly with < 111 > stress. Subtracting the stress shift of the conduction band minima, we have obtained 36 ± 4 meV/GPa as a net increase in energy for the level with the higher energy with respect to the applied stress. This result strongly suggests that compressive stress raises the energy of the Pt-H_2 level, indicating its antibonding character. We observed that the Pt-H_2 defect was aligned above 80 K under uniaxial stress to the configuration with the higher electronic level. This indicates that the stress-induced increase of level energy was overcome by the energy gain due to electronic bonding and atomic relaxation, resulting in the decrease of the total energy of the Pt-H_2 defect system. We found that the intensity ratio of split components of the IT-DLTS peak was described by a Boltzmann factor, where the activation energy is proportional to the magnitude of the applied stress up to 0.4 GPa with a proportional factor, 49 meV/GPa, from which we determined an element A_3 of the piezospectroscopic tensor to be -37 meV/GPa.
机译:我们回顾了我们最近的结果,并分析了单轴压缩应力对Si中铂-二氢(Pt-H_2)缺陷的电子态和原子构型的影响,并在我们提出的结构模型的基础上讨论了结果。我们应用了等温深层瞬变光谱技术(IT-DLTS),并结合了单轴压缩应力的应用。我们的实验表明,<111>和<100>应力将Pt-H_2缺陷的IT-DLTS峰分为两个分量,而<110>应力将其分为三个分量。这样的分裂模式和观察到的分裂成分的强度比可以唯一地确定缺陷具有C_(2v)对称性,这是我们的结构模型所基于的。我们发现对应于拆分分量的电子能级随<111>应力线性变化。减去导带最小值的应力偏移,我们获得了36±4 meV / GPa,这是能量的净增加量,该水平相对于所施加的应力具有更高的能量。该结果有力地表明,压应力提高了Pt-H_2能级,表明了其抗粘结性。我们观察到,Pt-H_2缺陷在单轴应力下在80 K以上排列成具有较高电子能级的构型。这表明由于电子键合和原子弛豫引起的能量增益克服了应力诱导的能级能量增加,从而导致Pt-H_2缺陷体系的总能量降低。我们发现,IT-DLTS峰的分裂分量的强度比由玻尔兹曼因子描述,其中活化能与所施加应力的大小成比例,最高0.4 GPa,比例因子为49 meV / GPa,从我们确定压电光谱张量的元素A_3为-37 meV / GPa。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号