...
首页> 外文期刊>Materials Science and Engineering. B, Solid-State Materials for Advanced Technology >Deposition of uniform and well adhesive diamond layers on planar tungsten copper substrates for heat spreading applications
【24h】

Deposition of uniform and well adhesive diamond layers on planar tungsten copper substrates for heat spreading applications

机译:在平面钨铜基板上沉积均匀且粘合良好的金刚石层,以进行散热应用

获取原文
获取原文并翻译 | 示例
           

摘要

For a more effective heat spreading we deposited thick diamond layers on tungsten copper substrates, which are used as heat sinks in the microelectronic industry. Disadvantages of high growth rate CVD techniques like microwave plasma assisted CVD (MWPACVD) or DC plasma jet CVD are the need for flat and preferable discoidal substrates, the limitation of the total substrate surface and the uniformity of the deposited layers. Thus, the uniform deposition of diamond on a large number of substrates with a rectangular or more complex geometry (like a 3D geometry) is limited. By using hot filament CVD (HFCVD) the reactor size is not limited and it is possible to increase the batch size. Even at typically lower growth rates in HFCVD the total coated surface can over-compensate this disadvantage and renders HFCVD economically more viable. We were able to scale up the number of substrates per HFCVD batch up to 240 pieces which is equal to a coating surface of 480 cm~2. The substrate temperature was kept between 820 and 870 ℃ to avoid copper diffusion to the surface and evaporation of copper. An average diamond growth rate of 0.23 μm/h allows the deposition of diamond layers in less than half of the time necessary by using, e.g. microwave plasma assisted CVD at typical process conditions for the same surface (1 μm/h growth rate; substrate temperature of about 850 ℃; 45.5 cm~2 coating surface per batch). In spite of the significantly increased coating surface it was possible to deposit uniform diamond layers with a high diamond quality. A further challenge is the bending of the substrates during cooling down caused by the different coefficients of thermal expansion for diamond and WCu. Cooling devices require a planar geometry. It was possible to prevent the substrates from bending after cooling down by using a special pretreatment.
机译:为了更有效地散热,我们在钨铜基板上沉积了厚的金刚石层,这些基板在微电子行业中用作散热器。诸如微波等离子体辅助CVD(MWPACVD)或DC等离子体喷射CVD之类的高生长速率CVD技术的缺点是需要平坦且优选的盘状衬底,限制了整个衬底表面和沉积层的均匀性。因此,限制了金刚石在大量具有矩形或更复杂的几何形状(如3D几何形状)的基板上的均匀沉积。通过使用热丝CVD(HFCVD),反应器的大小不受限制,并且可以增加批量大小。即使在HFCVD中通常以较低的增长率生长,整个涂层表面仍可以弥补这一缺点,从而使HFCVD在经济上更具可行性。我们能够将每批HFCVD的基板数量扩大到240片,这等于480 cm〜2的涂层表面。基板温度应保持在820至870℃之间,以避免铜扩散到表面和铜蒸发。平均金刚石生长速率为0.23μm/ h,可通过使用以下方法在不到所需时间的一半的时间内沉积金刚石层。微波等离子体辅助CVD在典型的工艺条件下进行相同的表面处理(生长速率为1μm/ h;基材温度约为850℃;每批涂层表面45.5 cm〜2)。尽管涂层表面明显增加,仍可以沉积出具有高质量金刚石质量的均匀金刚石层。另一个挑战是由于金刚石和WCu的热膨胀系数不同而导致的冷却过程中基板的弯曲。冷却装置需要平面的几何形状。通过使用特殊的预处理,可以防止基板在冷却后弯曲。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号