...
首页> 外文期刊>Materials Science and Engineering >Microstructure and mechanical properties of high Mn-containing ferritic-martensitic alloys exposed to cyclical thermal treatment
【24h】

Microstructure and mechanical properties of high Mn-containing ferritic-martensitic alloys exposed to cyclical thermal treatment

机译:含高Mn的铁素体 - 马氏体合金暴露于循环热处理的微观结构和力学性能

获取原文
获取原文并翻译 | 示例

摘要

Substantial residual tensile stress tends to accumulate in currently available high-Cr ferritic martensitic steels that are subjected to cyclical heat treatment, which leads to premature brittle fracture. By tailoring the alloy composition, this thermal cycling can be exploited to induce a high number density of nanoprecipitates and phase transformations countering residual tensile stresses. In this work, three new variants of ferritic-martensitic steels have been designed with computational thermodynamics to meet the goals of mitigating residual tensile stresses by lowering martensite start temperatures and of enhancing mechanical strength and irradiation sink strength by increasing the number density of nanoprecipitates. Cast materials were subjected to cyclical heat treatment. The thermally cycled samples were evaluated with mechanical testing and microstructural analysis to identify the optimal composition in which figures of merit include low residual stress and a high density of nanoscale MX (M = metal, X = C/N) precipitates, leading to high yield strength with reasonable ductility. The noticeably higher density of nanoprecipitates in the optimal alloy favor its higher yield strength, which is supported by the microstructure-derived yield strength calculation and precipitation kinetics simulation.
机译:大幅残留的拉伸应力趋于积聚在目前可用的高Cr铁素体马氏体钢中,其受循环热处理,这导致过早的脆性骨折。通过纵向剪裁合金组合物,可以利用该热循环以诱导纳米尺寸高密度的纳米沉淀物和相变抗衡抗拉应力的相变。在这项工作中,设计了三种铁素体 - 马氏体钢的新变型,通过计算热力学设计,通过降低马氏体开始温度和通过增加纳米尺寸的数量密度来增强机械强度和照射沉降强度来满足缓解残留拉伸应力的目标。铸造材料经受循环热处理。通过机械测试和微结构分析评估热循环样品,以鉴定优异的最佳组合物,其中优异的图形包括低残余应力和高密度的纳米级Mx(M =金属,X = C / N)沉淀,导致产量高具有合理延展性的强度。在最佳合金中,纳米沉淀物的明显较高密度有利于其较高的屈服强度,其由微观结构衍生的屈服强度计算和析出动力学模拟支持。

著录项

  • 来源
    《Materials Science and Engineering 》 |2021年第5期| 141143.1-141143.10| 共10页
  • 作者单位

    Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA;

    Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA;

    Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA University of Michigan Ann Arbor MI 48109 U.S.A.;

    Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA Lincoln Electric Company Chennai India;

    Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA Ultra Safe Nuclear Corporation Seattle WA U.S.A.;

    Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tensile; Charpy; Precipitate; Thermodynamics; Kinetics;

    机译:拉伸;夏比;沉淀;热力学;动力学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号