首页> 外文期刊>Materials Science and Engineering >Evaluation of the delayed hydride cracking mechanism for transgranular stress corrosion cracking of magnesium alloys
【24h】

Evaluation of the delayed hydride cracking mechanism for transgranular stress corrosion cracking of magnesium alloys

机译:镁合金经晶间应力腐蚀开裂的延迟氢化物开裂机理评价

获取原文
获取原文并翻译 | 示例
           

摘要

This paper evaluates the important elements of delayed hydride cracking (DHC) for transgranular stress corrosion cracking (TGSCC) of Mg alloys. A DHC model was formulated with the following components: (ⅰ) transient H diffusion towards the crack tip driven by stress and H concentration gradients; (ⅱ) hydride precipitation when the H solvus is exceeded; and (ⅲ) crack propagation through the extent of the hydride when it reaches a critical size of ~0.8 μm. The stress corrosion crack velocity, V_c, was calculated from the time for the hydride to reach the critical size. The model was implemented using a finite element script developed in MATLAB. The input parameters were chosen, based on the information available, to determine the highest possible value for V_c. Values for V_c of ~10~(-7) m/s were predicted by this DHC model. These predictions are consistent with measured values for V_c for Mg alloys in distilled water but cannot explain values for V_c of ~10~(-4) m/s measured in other aqueous environments. Insights for understanding Mg TGSCC are drawn. A key outcome is that the assumed initial condition for the DHC models is unlikely to be correct. During steady state stress corrosion crack propagation of Mg in aqueous solutions, a high dynamic hydrogen concentration would be expected to build up immediately behind the crack tip. Stress corrosion crack velocities ~10~(-4) m/s, typical for Mg alloys in aqueous solutions, might be predicted using a DHC model for Mg based on the time to reach a critical hydride size in steady state, with a significant residual hydrogen concentration from the previous crack advance step.
机译:本文评估了镁合金经氢应力腐蚀开裂(TGSCC)的延迟氢化物开裂(DHC)的重要元素。 DHC模型由以下成分组成:(ⅰ)由应力和H浓度梯度驱动的H向裂纹尖端的瞬时扩散; (ⅱ)超过氢固溶物时的氢化物沉淀; (ⅲ)当其达到〜0.8μm的临界尺寸时,裂纹在氢化物范围内扩展。从氢化物达到临界尺寸的时间计算应力腐蚀裂纹速度V_c。该模型是使用MATLAB开发的有限元脚本实现的。根据可用信息选择输入参数,以确定V_c的最大可能值。该DHC模型预测的V_c值为〜10〜(-7)m / s。这些预测与蒸馏水中镁合金的V_c的测量值一致,但不能解释在其他水性环境中测得的〜10〜(-4)m / s的V_c值。得出了理解Mg TGSCC的见解。一个关键的结果是,DHC模型的假定初始条件不太可能是正确的。在稳态应力腐蚀过程中,Mg在水溶液中的裂纹扩展过程中,会在裂纹尖端后立即建立高动态氢浓度。 DHC模型中的Mg可以基于在稳态下达到临界氢化物尺寸的时间预测Mg合金在水溶液中典型的应力腐蚀裂纹速度〜10〜(-4)m / s。先前裂纹扩展步骤中的氢浓度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号