首页> 外文期刊>Materials Science and Engineering >Enhanced resistance to liquation cracking during fusion welding of cast magnesium alloys: Microstructure tailoring via friction stir processing pre-weld treatment
【24h】

Enhanced resistance to liquation cracking during fusion welding of cast magnesium alloys: Microstructure tailoring via friction stir processing pre-weld treatment

机译:增强铸造镁合金熔焊过程中的耐液态裂纹的抗性:通过搅拌加工预焊接处理微观结构剪裁

获取原文
获取原文并翻译 | 示例
           

摘要

Magnesium alloys provide critical opportunities for energy and lightweight-materials challenges. The alloy design approach based on utilizing the second phase strengthening mechanism plays an essential role in producing low-density high strength Mg-based alloys. However, the second phase in the microstructure (e.g., Mg_(17)Al_(12) phase in Mg-Al-Zn alloys) can deleteriously affect the weldability of the metallic materials by promoting the liquation and liquation cracking during fusion welding. The lack of sufficient weldability of Mg-based alloys is a crucial barrier to their potential use in safety-critical applications. In this paper, it is shown that the severe plastic deformation induced by friction stir processing, as an effective pathway to microstructure refinement, before fusion welding enables tailoring the initial microstructure of an Mg-Al-Zn cast alloy for enhancing its resistance to liquation cracking. The formation of ultra-fine sub-micron Mg_(17)Al_(12) particles in friction stir treated base metal translates the liquation mechanism from sub-solvus constitutional liquation to super-solvus melting alloy, reducing the size of susceptible partial liquation zone to cracking. Moreover, the higher grain boundary density induced by dynamic recrystallization phenomena during friction stir processing can enhance the resistance to liquation cracking of the alloy. It is shown that this pre-welding strategy enables a significant enhancement in the weld mechanical properties compared to the conventionally produced welds. The joint efficiency, defined as the ratio of the joint tensile strength to the as-cast material tensile strength, was changed from 0.74 in case of welds made on cast base metal to 1.4 in case of welds made on friction stir processed base metal. This simple modification to the fusion welding process can be used as a practical pathway to enhance the weldability of liquation-sensitive second phase-strengthened alloys.
机译:镁合金为能源和轻质材料挑战提供了关键机会。基于利用第二相强化机制的合金设计方法在生产低密度高强度Mg基合金中起着重要作用。然而,微观结构中的第二相(例如,Mg_(17)中的Mg-Al-Zn合金中的Mg_(12)相)可以通过促进熔接期间的液化和液化裂解来彻底影响金属材料的可焊性。镁基合金缺乏充分的可焊性是它们在安全关键应用中潜在使用的关键障碍。在本文中,示出了通过搅拌搅拌加工引起的严重塑性变形,作为熔接焊接之前的微观结构细化的有效途径,使得Mg-Al-Zn铸造合金的初始微观结构用于增强其对液化裂解的抗性。摩擦搅拌处理的基础金属中的超细亚微米Mg_(17)Al_(12)颗粒的形成将来自亚溶剂结构的液化机制转化为超级溶剂熔融合金,降低了易感部分液化区的尺寸开裂。此外,在摩擦搅拌处理期间通过动态重结晶现象诱导的较高晶界密度可以增强合金的抗液态裂化。结果表明,与常规生产的焊接相比,这种预焊接策略能够实现焊接机械性能的显着增强。在在摩擦搅拌加工基础金属的焊缝的情况下,在铸造基础金属焊缝的情况下,改变为浇铸材料拉伸强度的关节拉伸强度与铸造材料拉伸强度的关节拉伸强度的比率。这种简单的修改对熔融焊接过程可用作实际途径,以提高液态敏感的第二相加强合金的可焊性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号