首页> 外文期刊>Materials Science and Engineering >Microstructure, tensile properties and deformation behaviors of aluminium metal matrix composites co-reinforced by ex-situ carbon nanotubes and in-situ alumina nanoparticles
【24h】

Microstructure, tensile properties and deformation behaviors of aluminium metal matrix composites co-reinforced by ex-situ carbon nanotubes and in-situ alumina nanoparticles

机译:铝金属基复合材料的微观结构,拉伸性能和变形行为,由前原位碳纳米管和原位氧化铝纳米粒子共加固

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, the origin of the high tensile ductility (>10% strain to fracture) of a new class of high-strength (yield strength >500 MPa) aluminium (Al) metal matrix composites (Al MMCs) co-reinforced by ex-situ carbon nanotubes (CNTs) and in-situ γ-Al_2O_3 nanoparticles was investigated. The microstructures of these unique Al MMCs prior to and post tensile testing were characterized in detail using high resolution transmission electron microscopy, in order to understand their response to tensile deformation. The pathways to the in-situ formation of γ-Al_2O_3 nanoparticles were identified and attributed to the high energy ball milling process, and the subsequent spark plasma sintering, which converted the amorphous Al-oxide into γ-Al_2O_3 nanoparticles. The in-situ γ-Al_2O_3 nanoparticles and Al matrix exhibited a semi-coherent interface, which led to a markedly increased dislocation density in the matrix around the nanoparticles during tensile deformation. These dislocations were precursors to microvoid formation and consequent dimples on further deformation. The co-operation of CNTs and γ-Al_2O_3 nanoparticles resulted in a long strain-softening stage and therefore excellent tensile ductility. The results suggested that the exploitation of hybrid reinforcement by ex-situ CNTs and in-situ nanoparticles can enable the fabrication of high-performance metal matrix composites.
机译:在本研究中,新的高强度(骨折裂缝的裂缝)的起源是通过前替换的新类高强度(屈服强度> 500MPa)铝(Al)金属基质复合材料(Al)金属基复合材料(Al)金属基复合材料(Al)金属基复合材料研究了-Situ碳纳米管(CNT)和原位γ-Al_2O_3纳米颗粒。通过高分辨率透射电子显微镜详细描述了这些独特AlMMC和后拉伸测试之前的微结构,以了解他们对拉伸变形的响应。对γ-Al_2O_3纳米颗粒的原位形成的途径被鉴定并归因于高能量球铣削过程,以及随后的火花血浆烧结,其将无定形的Al氧化物转化为γ-Al_2O_3纳米颗粒。原位γ-AL_2O_3纳米颗粒和Al基质表现出半相干界面,其在拉伸变形期间导致纳米颗粒周围的基质中的脱位密度显着增加。这些脱臼是微肺形成的前体,并在进一步变形上进行后续凹坑。 CNT和γ-Al_2O_3纳米颗粒的合作导致长应变软化阶段,因此具有优异的拉伸延展性。结果表明,通过原位CNT和原位纳米颗粒利用杂化增强能够制造高性能金属基质复合材料。

著录项

  • 来源
    《Materials Science and Engineering》 |2020年第23期|139930.1-139930.9|共9页
  • 作者单位

    State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xi 'an 710072 China;

    State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xi 'an 710072 China;

    Department of Mechanical Products China Aerospace Science and Technology Corporation Beijing 100094 China;

    Joining and Welding Research Institute Osaka University 11-1 Mihogaoka Ibaraki Osaka 567-0047 Japan;

    State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xi 'an 710072 China;

    Centre for Additive Manufacturing School of Engineering RMIT University Melbourne VIC 3000 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Metal matrix composites (MMCs); Carbon nanotubes (CNTs); Alumina nanoparticles; Strengthening; Tensile ductility;

    机译:金属基质复合材料(MMC);碳纳米管(CNT);氧化铝纳米粒子;强化;拉伸延性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号