首页> 外文期刊>Materials Science and Engineering >Elevated temperature mechanical properties of Inconel 617 surface oxide using nanoindentation
【24h】

Elevated temperature mechanical properties of Inconel 617 surface oxide using nanoindentation

机译:使用纳米茚满的Inconel 617表面氧化物的温度升高

获取原文
获取原文并翻译 | 示例
           

摘要

Inconel 617 is a principal candidate material for helium gas cooled very-high-temperature reactors with outlet temperatures of 700-950 °C. Recent findings showed that this alloy develops unique surface oxide layers especially at high temperature (HT) helium environment with distinctive wear, friction and contact properties. This study investigates the elevated temperature mechanical properties of Inconel 617 top surface layers aged in HT helium environment. Nanoindentation technique is used to obtain load-displacement graphs of the alloy top surface oxide in temperatures ranging from 25 °C up to 600 °C. In addition, using finite element analysis along with an iterative regression technique, a semi-numerical method is developed to further measure and quantify the material parameters and, in particular, time-independent and creep characteristics of the oxide. While Young's modulus of the oxide is found to be relatively close to the bulk for the tested temperatures, the yield strength and hardness, in comparison to the bulk material, increase significantly as the material is oxidized after aging. The oxide exhibits significant softening as the temperature increases to 600 °C. Unlike the bulk material, diffusion through the grains is found to be the dominant creep mechanism for the oxide. Considerable difference between the mechanical properties of the oxide and the bulk material shows the need for accurate measurements of near surface mechanical properties, if reliable predictive contact and tribological models are sought at elevated temperatures.
机译:Inconel 617是用于氦气冷却的非常高温反应器的主要候选材料,出口温度为700-950℃。最近的发现表明,该合金尤其在高温(HT)氦环境下具有独特的磨损,摩擦和接触性能的独特表面氧化物层。本研究研究了HT氦环境中的617型顶部表面层的升高的温度力学性能。纳米狭窄技术用于在高达600℃的温度范围内获得合金顶表面氧化物的负载 - 位移图。另外,使用有限元分析以及迭代回归技术,开发了一种半数学方法,以进一步测量和量化材料参数,特别是氧化物的较小和蠕变特性。虽然发现氧化物的杨氏模量相对接近测试的温度,但与散装材料相比,屈服强度和硬度,随着材料在老化后氧化而显着增加。随着温度的增加至600℃,氧化物表现出显着的软化。与散装材料不同,发现通过晶粒的扩散是氧化物的主要蠕变机制。氧化物和散装材料的机械性能之间的相当大差异表明,如果在高温下寻求可靠的预测接触和摩擦学模型,则需要准确测量近表面机械性能的准确测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号