首页> 外文期刊>Materials Science and Engineering >Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements
【24h】

Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements

机译:隐含有限元中嵌入多晶塑性对α-钛合金弯曲的建模

获取原文
获取原文并翻译 | 示例
           

摘要

An accurate description of the mechanical response of a-titanium requires consideration of mechanical anisotropy. In this work we adapt a polycrystal self-consistent model embedded in finite elements to simulate deformation of textured a-titanium under quasi-static conditions at room temperature. Monotonic tensile and compressive macroscopic stress-strain curves, electron backscattered diffraction and neutron diffraction data are used to calibrate and validate the model. We show that the model captures with great accuracy the anisotropic strain hardening and texture evolution in the material. Comparisons between predictions and experimental data allow us to elucidate the role that the different plastic deformation mechanisms play in determining microstructure and texture evolution. The polycrystal model, embedded in an implicit finite element code, is then used to simulate geometrical changes in bending experiments of α-titanium bars. These predictions, together with results of a macroscopic orthotropic elasto-plastic model that accounts for evolving anisotropy, are compared with the experiments. Both models accurately capture the experimentally observed upward shift of the neutral axis as well as the rigidity of the material response along hard-to-deform crystallographic < c> direction.
机译:对a钛机械响应的准确描述需要考虑机械各向异性。在这项工作中,我们采用嵌入有限元中的多晶自洽模型来模拟室温下准静态条件下织构的a钛的变形。使用单调拉伸和压缩宏观应力-应变曲线,电子背散射衍射和中子衍射数据来校准和验证模型。我们表明,该模型以很高的精度捕获了材料中的各向异性应变硬化和纹理演变。预测和实验数据之间的比较使我们能够阐明不同塑性变形机制在确定微观结构和织构演变中的作用。然后将嵌入到隐式有限元代码中的多晶模型用于模拟α-钛棒弯曲实验中的几何变化。将这些预测以及宏观各向异性的弹塑性模型的结果与实验进行了比较,该模型解释了各向异性的发展。这两个模型都准确地记录了实验观察到的中性轴的向上偏移以及沿着难以变形的晶体学c方向的材料响应的刚度。

著录项

  • 来源
    《Materials Science and Engineering》 |2013年第1期|116-126|共11页
  • 作者单位

    Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;

    Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;

    Department of Mechanical and Aerospace Engineering, University of Florida, REEF, 1350 N Poquito Road, Shalimar, FL 32539, USA;

    Department of Mechanical and Aerospace Engineering, University of Florida, REEF, 1350 N Poquito Road, Shalimar, FL 32539, USA;

    School of Civil Engineering, University of Sydney, NSW 2006, Australia;

    Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM, USA;

    Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL 32542, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    titanium alloys; crystal plasticity; texture; twinning; finite element method; EBSD;

    机译:钛合金晶体可塑性质地;孪生有限元法欧洲可持续发展委员会;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号