...
首页> 外文期刊>Materials Science and Engineering >Microstructure control and mechanical properties of Ti44Al6Nb1.0Cr2.0V alloy by cold crucible directional solidification
【24h】

Microstructure control and mechanical properties of Ti44Al6Nb1.0Cr2.0V alloy by cold crucible directional solidification

机译:冷坩埚定向凝固Ti44Al6Nb1.0Cr2.0V合金的组织控制和力学性能

获取原文
获取原文并翻译 | 示例

摘要

The as-cast Ti44Al6Nb1.0Cr2.0V alloy master ingot was prepared by vacuum consumable melting technology. Some bars were cut from this ingot and they were directionally solidified by cold crucible under different pulling velocities. The samples could be well directionally solidified when the power (P) was 45 kW and the pulling velocity (V) was 8.33 μm/s or 11.67 μm/s. The results show that the interlamellar space of the directionally solidified samples decreases from the average 1650 nm of as-cast to less than 565 nm and is more homogeneous. The microcrack in the master ingot can be eliminated completely and the room temperature (RT) tensile property is also improved after cold crucible directional solidification (CCDS). The ultimate tensile strength (UTS) is 602.5 MPa and the elongation is 1.20% as P=45 kW and V= 11.67 μm/s, compared with as-cast 499 MPa of UTS and 0.53% of elongation. Trans-granular and trans-lamella fractures are predominant modes. The relationship between CCDS interlamellar space (d) and the pulling velocity can be described as d= 1783.2V~(-0.554) and r_1~2 = 0.972, where r_1~2 is the corresponding regression coefficient. The CCDS interlamellar space and nanoindentation hardness (H_N) in the lamella region can be described as H_N = 17.95d~(-0.145) and r_2~2 = 0.986, and they are changed as H'_N = 14.03d'~(-0.104) and r_3~2= 0.975 when the cast condition is considered. The nanoindentation hardness of the B_2 phase and the block γ phase are about 8.89 GPa and 8.15 GPa, respectively; both of them keep almost the same in different conditions.
机译:采用真空消耗熔化技术制备了铸态Ti44Al6Nb1.0Cr2.0V合金主锭。从该铸锭上切下一些棒,并在不同的拉速下通过冷坩埚定向凝固。当功率(P)为45 kW,牵引速度(V)为8.33μm/ s或11.67μm/ s时,样品可以很好地定向凝固。结果表明,定向凝固样品的层间空间从铸态的平均1650 nm减小到小于565 nm,并且更加均匀。冷坩埚定向凝固(CCDS)后,可以完全消除主锭中的微裂纹,并且还改善了室温(RT)拉伸性能。极限抗拉强度(UTS)为602.5 MPa,当P = 45 kW和V = 11.67μm/ s时,伸长率为1.20%,而铸造的499 MPa和伸长率为0.53%。横纹和横纹骨折是主要的骨折方式。 CCDS层间距(d)与拉动速度之间的关系可以描述为d = 1783.2V〜(-0.554)和r_1〜2 = 0.972,其中r_1〜2是相应的回归系数。片层区域的CCDS层间空间和纳米压痕硬度(H_N)可以描述为H_N = 17.95d〜(-0.145)和r_2〜2 = 0.986,并且它们随着H'_N = 14.03d'〜(-0.104)而变化),并且在考虑转换条件时r_3〜2 = 0.975。 B_2相和嵌段γ相的纳米压痕硬度分别约为8.89 GPa和8.15 GPa。它们在不同条件下几乎保持相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号