...
首页> 外文期刊>Materials Science and Engineering >Mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals
【24h】

Mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals

机译:金属多晶体中微结构小疲劳裂纹的中尺度建模

获取原文
获取原文并翻译 | 示例
           

摘要

The formation and early growth of fatigue cracks in the high cycle fatigue regime is influenced by microstructure features such as grain size and morphological and crystallographic texture. However, most fatigue models do not predict the influence of the microstructure on early stages of crack formation, or they employ parameters that should be calibrated with experimental data from specimens with microstructures of interest. These post facto strategies are adequate to characterize materials, but they are not fully appropriate to aid in the design of fatigue-resistant engineering alloys. This paper presents a modeling framework that facilitates relative assessment of fatigue resistance among different micro-structures, including the microstructurally small crack growth regime. The scheme employs finite element simulations based on crystal plasticity that explicitly render the microstructure and a methodology that estimates transgranular growth of microstructurally small cracks on a grain-by-grain basis, including consideration of growth within grains and stress redistribution as the cracks extend. The methodology is implemented in ABAQUS and is calibrated to study fatigue crack initiation of a bimodal grain size distribution found in RR1000 powder processed Ni-base superalloys for aircraft gas turbine disk applications. The transition to intergranular failure is also considered.
机译:高循环疲劳状态下疲劳裂纹的形成和早期生长受微观结构特征(如晶粒大小,形态和晶体学织构)的影响。但是,大多数疲劳模型无法预测微观结构对裂纹形成早期的影响,或者它们采用的参数应根据具有目标微观结构的样品的实验数据进行校准。这些事后策略足以表征材料,但并不完全适合于设计抗疲劳工程合金。本文提出了一个建模框架,该框架有助于相对评估不同微结构(包括微结构小裂纹扩展方案)之间的抗疲劳性。该方案采用基于晶体可塑性的有限元模拟,该模拟显式地呈现了微结构,并且采用了一种方法来估算逐个晶粒的微观结构小裂纹的穿晶生长,包括考虑了晶粒内的生长以及随着裂纹扩展应力的重新分布。该方法在ABAQUS中实现,并经过校准以研究在航空燃气涡轮机磁盘应用中RR1000粉末处理的镍基高温合金中发现的双峰粒度分布的疲劳裂纹萌生。还考虑了向晶间破坏的过渡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号