...
首页> 外文期刊>Materials Science and Engineering >Experimental investigation and numerical description of the damage evolution in a duplex stainless steel subjected to VHCF-loading
【24h】

Experimental investigation and numerical description of the damage evolution in a duplex stainless steel subjected to VHCF-loading

机译:VHCF载荷下双相不锈钢损伤演变的实验研究和数值描述

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The present study documents how the irreversible fraction of cyclic plastic strain, induced by loading amplitudes close to the durability limit, causes fatigue damage such as (ⅰ) slip band development, (ⅱ) fatigue crack initiation and (ⅲ) short fatigue crack propagation. The damage evolution of the austenitic-ferritic duplex stainless steel X2CrNiMoN22-5-3 (318 LN) was investigated up to one billion load cycles by means of high resolution electron microscopy (HR-SEM, TEM), focused ion beam (FIB) cutting, con-focal laser scanning microscopy (CLSM), in-situ far field microscopy and high-energy (87.1 keV) X-ray diffraction (XRD) experiments. The experimentally identified damage mechanisms were implemented into three-dimensional finite element simulations, which consider crystal plasticity. These simulations enable fatigue life predictions of real microstructures obtained for instance by means of, e.g. automated electron back scatter diffraction (EBSD) analysis. The simulations allow for determining whether mi-crocracks (ⅰ) initiate in a microstructure, (ⅱ) arrest in the midst of the first grain, (ⅲ) are permanently, (ⅳ) temporary or (ⅴ) not at all blocked by grain or phase boundaries. Moreover, this concept is capable to contribute to the concept of tailored microstructures for improved cyclic-loading behavior.
机译:本研究记录了由接近于耐久性极限的加载幅度引起的循环塑性应变的不可逆部分如何引起疲劳破坏,例如(ⅰ)滑动带发展,(ⅱ)疲劳裂纹萌生和(ⅲ)短疲劳裂纹扩展。通过高分辨率电子显微镜(HR-SEM,TEM),聚焦离子束(FIB)切割研究了高达十亿个负载循环的奥氏体-铁素体双相不锈钢X2CrNiMoN22-5-3(318 LN)的损伤演化,共聚焦激光扫描显微镜(CLSM),原位远场显微镜和高能(87.1 keV)X射线衍射(XRD)实验。实验确定的损伤机制被实现到考虑晶体可塑性的三维有限元模拟中。这些模拟使得能够预测例如通过例如热力学方法获得的真实微结构的疲劳寿命。自动电子背散射衍射(EBSD)分析。通过模拟可以确定微裂纹(ⅰ)是否在微观结构中引发,(ⅱ)在第一个晶粒的中间停滞,(ⅲ)是永久性,(ⅳ)暂时还是(ⅴ)完全没有被晶粒或相界。而且,该概念能够有助于定制的微结构的概念,以改善循环载荷行为。

著录项

  • 来源
    《Materials Science and Engineering》 |2015年第14期|8-18|共11页
  • 作者单位

    Institut fuer Werkstofftechnik. Universitaet Siegen, D-57068 Siegen, Germany,Institut fuer Mechanik und Regelungstechnik - Mechatronik, Universitaet Siegen, D-57068 Siegen, Germany;

    Festkoerperphysik, Universitaet Siegen, D-57068 Siegen, Germany;

    Fakultaet fuer Ingenieurwissenschaften und Informatik, Hochschule Osnabrueck, D-49009 Osnabrueck, Germany;

    Helmholtz-Zentrum Geesthacht, Zentrum fuer Material- und Kuestenforschung, D-21502 Geesthacht, Germany;

    Fakultaet fuer Ingenieurwissenschaften und Informatik, Hochschule Osnabrueck, D-49009 Osnabrueck, Germany;

    Festkoerperphysik, Universitaet Siegen, D-57068 Siegen, Germany;

    Institut fuer Mechanik und Regelungstechnik - Mechatronik, Universitaet Siegen, D-57068 Siegen, Germany;

    Institut fuer Werkstofftechnik. Universitaet Siegen, D-57068 Siegen, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Very high cycle fatigue; Fatigue crack initiation; Short fatigue crack propagation; High energy x-ray diffraction; Mesoscopic simulation;

    机译:极高的循环疲劳;疲劳裂纹萌生;疲劳裂纹扩展时间短;高能X射线衍射;介观模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号