...
首页> 外文期刊>Materials Science and Engineering >Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu-Al alloys
【24h】

Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu-Al alloys

机译:Cu-Al合金化学脱合金法制备块状纳米多孔Cu的力学行为

获取原文
获取原文并翻译 | 示例

摘要

We report on a study of the influence of microstructure on the mechanical behavior of bulk nanoporous Cu fabricated by chemical de-alloying of Cu_(50)Al_(50), Cu_(40)Al_(60), Cu_(33)Al_(67) and Cu_(30)Al_(70) (at%) alloys. The precursor Cu-Al alloys were fabricated using arc melting and bulk nanoporous Cu was obtained by subsequent de-alloying of Cu-Al alloys in 20 wt% NaOH aqueous solution at a temperature of 65 ℃. We studied the microstructure of the precursor Cu-Al alloys, as well as that of the as de-alloyed bulk nanoporous Cu, using X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Moreover, the compressive strength of bulk nanoporous Cu was measured and the relationship between microstructure and mechanical properties was studied. Our results show that the microstructure of bulk nanoporous Cu is characterized by bi-continuous interpenetrating ligament-channels with a ligament size of 130 ± 20 nm (for Cu_(50)Al_(50)), 170 ± 20 nm (for Cu_(40)Al_(60)) and 160 ± 10 nm (for Cu_(33)Al_(67)). Interestingly the microstructure of de-alloyed Cu_(30)Al_(70) is bimodal with nanopores (100's nm) and interspersed featureless regions a few microns in size. The compressive strength increased with decreasing volume fraction of porosity; as porosity increased 56.3 ± 2% to 73.9 ± 2%, the compressive strength decreased from 17.18 ± 1 MPa to 2.71 ± 0.5 MPa.
机译:我们报道了通过对Cu_(50)Al_(50),Cu_(40)Al_(60),Cu_(33)Al_(67)进行化学脱合金处理而制备的块状纳米多孔铜的力学行为的影响的研究报告。 )和Cu_(30)Al_(70)(at%)合金。使用电弧熔化法制备了前体Cu-Al合金,随后在65℃的温度下于20 wt%NaOH水溶液中对Cu-Al合金进行脱合金处理,获得了块状纳米多孔Cu。我们使用X射线衍射,扫描电子显微镜和能量色散光谱法研究了前体Cu-Al合金以及脱合金的块状纳米多孔Cu的微观结构。此外,测量了块状纳米多孔铜的抗压强度,并研究了其微观结构与力学性能之间的关系。我们的结果表明,块状纳米多孔Cu的微观结构具有双连续互穿的韧带通道,韧带尺寸为130±20 nm(对于Cu_(50)Al_(50)),170±20 nm(对于Cu_(40 Al_(60))和160±10 nm(对于Cu_(33)Al_(67))。有趣的是,脱合金Cu_(30)Al_(70)的微观结构是双峰的,具有纳米孔(100's nm)和散布着几微米大小的无特征区域。抗压强度随孔隙体积分数的减小而增加。随着孔隙率增加56.3±2%至73.9±2%,抗压强度从17.18±1 MPa降低至2.71±0.5 MPa。

著录项

  • 来源
    《Materials Science and Engineering 》 |2016年第13期| 241-250| 共10页
  • 作者单位

    State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, CA 92697, USA;

    State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nanoporous Cu; Cu-Al alloys; Chemical de-alloying; Compressive strength;

    机译:纳米孔铜;铜铝合金化学脱合金;抗压强度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号