首页> 外文期刊>Materials Science and Engineering >Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6
【24h】

Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6

机译:Al 7075-T6的多晶塑性对滑动系统运动硬化规律的敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT) within ABAQUS (Abaqus unified FEA, 2016) [1], with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress [2]. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law [3] with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. The relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.
机译:预测微结构小的疲劳裂纹的形成和早期生长需要使用本构模型,该模型可以准确地估计应力,应变和循环塑性应变的局部状态。但是,很少有研究工作试图系统地考虑整体滑动应力应变滞后的敏感性以及滑移系统背应力配方在晶体塑性方面引入的高阶平均应力松弛和塑性应变棘轮响应,即使对于面心立方(FCC) )晶体系统。本文使用有限元晶体可塑性实现作为ABAQUS中的用户材料子例程(UMAT)(Abaqus统一FEA,2016)[1],具有完全隐式数值积分,探索了两个滑动系统级运动硬化模型的性能。两种运动硬化配方的目的是从宏观循环应力-应变滞后回线形状以及在平均应变或平均应变或应力控制载荷下的棘轮和平均应力松弛方面再现多晶Al 7075-T6的循环变形。压力分别。第一个公式是阿姆斯特朗-弗雷德里克(Armstrong-Frederick)型硬化动态回复律,用于演化背应力[2]。这种方法能够在完全反向的单轴载荷条件下重现观察到的变形,但是会过度预测循环棘轮的速率和相关的平均应力松弛。第二个公式对应于具有非线性动态恢复的多重背应力Ohno-Wang型硬化定律[3]。采用这种背应力演化定律大大提高了对以平均应力或应变循环的多晶样品进行实验结果建模的能力。这种非线性动力恢复效应的关系与滑动系统与位错子结构的相互作用有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号