首页> 外文期刊>Materials & design >Thermal insulation characteristics of a lightweight, porous nanomaterial in high-temperature environments
【24h】

Thermal insulation characteristics of a lightweight, porous nanomaterial in high-temperature environments

机译:轻质多孔纳米材料在高温环境下的隔热特性

获取原文
获取原文并翻译 | 示例
           

摘要

Thermal-insulating nanomaterialswith excellent thermal insulation performance are one type of thermal protection material used in spacecraft. In this study, the high-temperature insulation characteristics of a lightweight, porous aluminum oxide (Al2O3) nanomaterial were studied through experimentation using a self-developed thermal testing system for high-speed spacecraft, and were calculated by numerical simulation. The results showed that in a 1200 degrees C front-surface, high-temperature environment, an Al2O3 nanomaterial sheet with a thickness of only 10 mm could reduce the temperature by over 70% while exhibiting stable thermal insulation performance. This demonstrates that the Al2O3 nanomaterial has excellent high-temperature insulation performance. The scanning electron microscopy (SEM) images showed that, after the temperature exceeded 1200 degrees C, the aggregation and growth of the Al2O3 nanoparticles accelerated, and single Al2O3 nanoparticles and voids increased significantly in size; in addition, the fibers inside the material started to melt, and the cracks started to increase considerably in number, depth, andwidth. Furthermore, a significant contraction and bending deformation occurred at the edges of the Al2O3 nanomaterial sheet; therefore, the Al2O3 nanomaterial is suitable for use in a thermal environment below1200 degrees C. The results provide an important reference basis for the design of thermal protection systems for spacecraft. (C) 2017 Elsevier Ltd. All rights reserved.
机译:具有优异隔热性能的隔热纳米材料是航天器中使用的一种隔热材料。在这项研究中,通过使用自行开发的高速航天器热测试系统进行实验,研究了轻质多孔氧化铝(Al2O3)纳米材料的高温绝缘特性,并通过数值模拟进行了计算。结果表明,在1200摄氏度的前表面高温环境下,厚度仅为10 mm的Al2O3纳米材料片可将温度降低70%以上,同时具有稳定的隔热性能。这表明Al2O3纳米材料具有优异的高温绝缘性能。扫描电子显微镜(SEM)图像显示,温度超过1200℃后,Al2O3纳米颗粒的聚集和生长加速,单个Al2O3纳米颗粒和空隙的尺寸显着增加。此外,材料内部的纤维开始熔化,并且裂纹的数量,深度和宽度开始明显增加。此外,在Al 2 O 3纳米材料板的边缘处发生显着的收缩和弯曲变形。因此,Al2O3纳米材料适用于1200摄氏度以下的热环境。结果为航天器热保护系统的设计提供了重要的参考依据。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号