Abstract Novel volumetric Helmholtz free energy function accounting for isotropic cavitation at finite strains
首页> 外文期刊>Materials & design >Novel volumetric Helmholtz free energy function accounting for isotropic cavitation at finite strains
【24h】

Novel volumetric Helmholtz free energy function accounting for isotropic cavitation at finite strains

机译:新的体积亥姆霍兹自由能函数解释了有限应变下的各向同性空化

获取原文
获取原文并翻译 | 示例
       

摘要

AbstractCavitation in rubber-like materials is commonly known as sudden void growth under hydrostatic tension till material failure occurs. Experimental investigations of adhesives, e.g. structural silicones accounting for cavitation in combination with the numerical treatment of this phenomenon are rare. Accordingly, this paper presents a micro-mechanically motivated constitutive model accounting for isotropic void growth. It was developed based on numerical homogenization schemes of a cube with an incompressible matrix containing a single, vacuous void in the center. To differentiate whether an initial void is growing, a new developed void growth criterion is presented. The void growth criterion was coupled with the new developed volumetricHelmholtzfree energy function to extend the classical volumetric-deviatoric split to large volume strains. Experiments were performed with a structural silicone under uniaxial tension as well as so-called pancake tests and compared with the new developed volumetric constitutive model accounting for isotropic cavitation. To observe qualitatively cavitation during experiments, a new testing device was developed, which enables one to characterize this damaging effect of the adhesive bonding. The numerical validation shows a good approximation of the experimental results. In order to improve the simulation results, an optimization study on the constitutive parameters was conducted.Graphical AbstractDisplay OmittedHighlightsExperimental Analysis of Nano-Cavitation of Transparent Structural SiliconNumerical Modeling of Poro-Hyperelastic Material with Finite Void FractionNovel Micro-Mechanically Motivated Hyperelastic Constitutive Model Accounting for Cavitation at Finite Void FractionNew Testing Device to Visualize Cavitation during Macroscopic Experimental TestingContradictory Results between Established Critical Load for Cavitation and Experimental Results
机译: 摘要 橡胶状材料中的空化现象通常被称为在静水压力下突然的空隙增长,直到发生材料破坏为止。胶粘剂的实验研究,例如结合这种现象的数值处理,考虑到空化的结构有机硅很少见。因此,本文提出了一种考虑各向同性空隙增长的微机械动力本构模型。它是基于立方体的数值均化方案而开发的,该立方体具有不可压缩的矩阵,该矩阵的中心包含一个空的空隙。为了区分初始空隙是否正在增长,提出了新制定的空隙增长准则。孔隙增长准则与新开发的体积亥姆霍兹自由能函数相结合,将经典的体积微分分裂扩展到大体积应变。实验是在单轴张力下使用结构化有机硅以及所谓的薄饼测试进行的,并与考虑到各向同性气蚀的新开发的体积本构模型进行了比较。为了在实验过程中定性观察气蚀现象,开发了一种新的测试设备,该设备可以表征粘合剂粘结的这种破坏效果。数值验证显示了实验结果的良好近似。为了改善仿真结果,对本构参数进行了优化研究。 图形摘要 省略显示 突出显示 透明结构硅的纳米空化的实验分析 具有有限空隙率的多孔超弹性材料的数值模拟 < / ce:list-item> 从微机械角度看有限空隙率下空化的动力超弹性本构模型 < ce:para id =“ p0025” view =“ all”>在宏观实验测试过程中可视化气蚀的新测试设备 已建立的空化临界载荷与实验结果之间的矛盾结果

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号