...
首页> 外文期刊>Materials & design >Characterization of innovative rotary swaged Cu-Al clad composite wire conductors
【24h】

Characterization of innovative rotary swaged Cu-Al clad composite wire conductors

机译:创新的旋转型锻铜铝复合复合导线的特性

获取原文
获取原文并翻译 | 示例
           

摘要

Cu/Al composites are perspective for applications in a wide range of industrial and commercial branches, from transportation to elecatrotechnics. This study focuses on Cu/Al clad composite wires with 5 mm diameter featuring unique sequencing produced via the technology of rotary swaging at the processing temperatures of 20 degrees C and 250 degrees C. During the swaging process, we continuously acquired samples for investigations and used our own KOMAFU S600 system for dynamic detection of swaging forces. The composite wires subjected to electrical resistivity measurement were further analysed via electron microscopy, neutron diffraction, and mechanical testing. The results showed that both the total imposed strain (swaging degree) and swaging temperature influenced the investigated parameters non-negligibly. The samples subjected to high reduction ratios (swaging degree 3) at the temperature of 250 degrees C exhibited formation of intermetallics at the interfaces, which deteriorated the electric conductivity. However, the conductivity was also affected by structural phenomena, such as work hardening, texture development, dislocations density, and recrystallization. All the final 5 mm samples exhibited sufficient bonding of both the components and recrystallized ultra-fine grained structures providing them with the ultimate tensile strength of 200 MPa. (C) 2018 Elsevier Ltd. All rights reserved.
机译:Cu / Al复合材料是从运输到电子技术的各种工业和商业分支应用的前景。这项研究的重点是直径为5 mm的Cu / Al包层复合线材,具有通过在20摄氏度和250摄氏度的加工温度下进行旋转锻造技术生产的独特序列。在锻造过程中,我们不断获取样品进行研究并使用我们自己的KOMAFU S600系统,用于动态检测型锻力。通过电子显微镜,中子衍射和机械测试进一步分析经受电阻率测量的复合线。结果表明,施加的总应变(模锻度)和模锻温度对研究参数的影响均不可忽略。在250摄氏度的温度下经受高还原比(变形度> 3)的样品在界面处形成金属间化合物,从而降低了导电性。但是,电导率还受到结构现象的影响,例如加工硬化,织构发展,位错密度和重结晶。所有最终的5mm样品均显示出组分和重结晶的超细晶粒结构均具有足够的粘结性,从而使它们具有> 200 MPa的极限拉伸强度。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号