...
首页> 外文期刊>Marine Systems & Ocean Technology >Determination of the geometric and material properties of the NREL Phase Ⅵ wind turbine blade
【24h】

Determination of the geometric and material properties of the NREL Phase Ⅵ wind turbine blade

机译:NREL相位风力涡轮机叶片的几何和材料特性的测定

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, the wind turbine market has gained relevance due to technological advances that make this renewable energy type increasingly efficient and economically competitive. Numerous studies have focused on the rotor blades due to their design process and constant increase in dimensions. During their useful life, the blades are exposed to critical external loads from winds, gravity, and dynamic interactions. In addition to having a high aerodynamic performance, these structures are made of composite materials to achieve a high strength-to-weight ratio. A fluid-structure interaction (FSI) simulation is required to analyze the complex aeroelastic phenomenon of wind pressure on the turbine blades. A more accurate structural response of the FSI behavior can be performed using shell elements in a finite element analysis based on the sectional beams’ mass and stiffness properties. In the present work, the geometric and material properties are determined from the mass and stiffness properties for a blade of the unsteady aerodynamics experiment (UAE) Phase Ⅵ wind turbine, tested by the National Renewable Energy Laboratory (NREL) in the NASA Ames wind tunnel. The application of a technique makes it possible to detail the thickness distribution, the number of the composite layers, and mechanical and physical properties of the material, relating it with the most relevant structural properties of the blade sections. This result can contribute to the more accurate calibration of FSI models for predicting structural behavior. The numerical models are correlated with the experimental test’s natural frequencies to ensure the attendance of the dynamic blade requirements.
机译:近年来,风力涡轮机市场由于技术进步而取得了相关性,使得这种可再生能源类型越来越有效,经济地竞争。许多研究由于其设计过程而聚焦在转子叶片上,并且尺寸恒定增加。在其使用寿命期间,刀片暴露于来自风,重力和动态相互作用的关键外部负载。除了具有高空气动力学性能之外,这些结构由复合材料制成,以实现高强度重量比。需要流体结构相互作用(FSI)模拟来分析涡轮机叶片上的风压复杂的空气弹性现象。可以使用基于截面光束质量和刚度特性的有限元分析中的壳体元件来执行FSI行为的更准确的结构响应。在本作本作中,几何和材料特性由不稳定空气动力学实验(UAE)相位ⅵ风力涡轮机的块状和刚度特性确定,由NASA AMES风洞的国家可再生能源实验室(NREL)测试。一种技术的应用使得可以详细描述材料的厚度分布,复合层的数量和材料的机械和物理性质,其与叶片部分的最相关的结构特性相关联。该结果可以有助于更准确地校准FSI模型以预测结构行为。数值模型与实验测试的自然频率相关,以确保动态刀片要求的出席。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号