首页> 外文期刊>Marine Structures >LQR control on multimode vortex-induced vibration of flexible riser undergoing shear flow
【24h】

LQR control on multimode vortex-induced vibration of flexible riser undergoing shear flow

机译:Multimode Vortex诱导的柔性立管接收剪切流动振动的LQR控制

获取原文
获取原文并翻译 | 示例
       

摘要

Under the actions of ocean currents and/or waves, deep-sea flexible risers are often subject to vortex-induced vibration (VIV). The VIV can lead to severe fatigue and structural safety issues caused by oscillatory periodic stress and large-amplitude displacement. As flexible risers have natural modes with lower frequency and higher density, a multimode VIV is likely to occur in risers under the action of ocean currents, which is considered as shear flow. To decrease the response level of the VIV of the riser actively, a multimode control approach that uses a bending moment at the top end of the riser via an LQR optimal controller is developed in this study. The dynamic equations of a flexible riser including the control bending moment in shear flow are established both in the time and state-space domains. The LQR controllers are then designed to optimize the objective function, which indicates the minimum cost of the riser's VIV response and control input energy based on the Riccati equation of the closed-loop system under the assumption that the lift coefficient distribution is constant. Finally, the VIV responses of both the original and closed-loop systems under different flow velocities are examined through numerical simulations. The results demonstrate that the designed active control approaches can effectively reduce the riser displacement/angle by approximately 71%-89% compared with that of the original system. Further, for multimode control, the presented mode-weighted control is more effective than the mode-averaged control; the decrease in displacement is approximately 1.13 times than that of the mode-averaged control. Owing to the increase in flow velocity as more and higher-order modes are excited, the VIV response of the original system decreases slightly while the frequency response gradually increases. For the closed-loop system, the response becomes smaller and more complicated, and the efficiency of the controller becomes lower at a certain flow velocity.
机译:在海洋电流和/或波浪的作用下,深海柔性立管往往受涡旋诱导的振动(VIV)。 VIV可能导致由振荡周期性应力和大幅度位移引起的严重疲劳和结构安全问题。由于柔性立管具有较低频率和更高密度的自然模式,因此在海洋电流的作用下可能发生多模VIV,其被认为是剪切流量。为了主动降低提升管VIV的响应水平,在该研究中开发了一种通过LQR最佳控制器在提升板的顶端使用弯矩的多模控制方法。在时间和状态空间域中,建立了包括剪切流程中的控制弯矩的柔性立管的动态方程。然后设计LQR控制器以优化目标函数,该目标函数表示提升器的VIV响应和控制输入能量的最小成本,并根据升力系数分布恒定的假设基于闭环系统的Riccati等式。最后,通过数值模拟检查了不同流速下的原始和闭环系统的VIV响应。结果表明,与原始系统相比,设计的主动控制方法可以有效地将提升管位移/角度降低约71%-89%。此外,对于多模控制,所呈现的模式加权控制比模式平均控制更有效;位移的降低约为比模式平均控制的1.13倍。由于越来越高的模式兴奋的流速增加,原始系统的VIV响应逐渐减小,而频率响应逐渐增加。对于闭环系统,响应变得越来越复杂,并且控制器的效率在某种流速下变低。

著录项

  • 来源
    《Marine Structures》 |2021年第9期|103047.1-103047.21|共21页
  • 作者单位

    Chinese Acad Sci Inst Mech Key Lab Mech Fluid Solid Coupling Syst Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Engn Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Inst Mech Key Lab Mech Fluid Solid Coupling Syst Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Engn Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Inst Mech Key Lab Mech Fluid Solid Coupling Syst Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Engn Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Inst Mech Key Lab Mech Fluid Solid Coupling Syst Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Engn Sci Beijing 100049 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Flexible riser; Vortex-induced vibration; Active control; LQR method;

    机译:柔性立管;涡旋引起的振动;主动控制;LQR方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号