...
首页> 外文期刊>Magnetics Letters, IEEE >Buffered Spin-Torque Sensors for Minimizing Delay and Energy Consumption in Global Interconnects
【24h】

Buffered Spin-Torque Sensors for Minimizing Delay and Energy Consumption in Global Interconnects

机译:缓冲自旋扭矩传感器,用于最大程度地减少全局互连中的延迟和能耗

获取原文
获取原文并翻译 | 示例
           

摘要

We propose a low-voltage, low-current interconnect architecture using buffered/pipelined spin-torque (ST) sensors to optimize the overall delay and energy consumption. Conventional techniques for reducing energy consumption on long interconnects involve low voltage swings on interconnects or current-mode interconnects. However, such techniques require power-consuming voltage converters or trans-impedance amplifiers at the receivers. ST-sensor-based receivers have recently been introduced that can operate without analog components at the receiver. As a result, the energy consumption is lower compared to existing techniques. However, the delay can be relatively high in these networks for long Cu-lines since these methods do not accommodate conventional buffering schemes for delay minimization. Here, we propose the use of ST buffers in the line in addition to ST-sensing at the receiver. The buffers and sensors used in our design consist of a magnetic strip of two magnetic domains separated by a domain wall. The domain wall can be moved by a current flowing through an adjacent spin-Hall metal which leads to a change in the resistance of the receiver. This resistance change is easily sensed using simple CMOS components. With the introduction of buffering for ST-sensor interconnects, the proposed method can be highly efficient in optimizing the energy-delay performance for long, global on-chip or off-chip lines. Our simulation results indicate that for a 10 mm line in 45 nm CMOS technology, the energy consumption with ST-sensing is about 2 percent that of full-swing, and about 4 percent that of low-swing, CMOS interconnects. Moreover, the delay is much lower than low-swing, and comparable to full-swing, CMOS designs.
机译:我们提出了一种低电压,低电流互连架构,该架构使用缓冲/流水线自旋扭矩(ST)传感器来优化整体延迟和能耗。减少长互连上的能量消耗的常规技术涉及互连或电流模式互连上的低电压摆幅。但是,这样的技术需要在接收器处消耗功率的电压转换器或跨阻放大器。最近引入了基于ST传感器的接收器,该接收器无需模拟组件即可运行。结果,与现有技术相比,能耗更低。但是,对于长的Cu线路,在这些网络中的延迟可能会相对较高,因为这些方法无法适应用于最小化延迟的常规缓冲方案。在这里,我们建议除了在接收器处进行ST感测之外,还在线路中使用ST缓冲区。我们设计中使用的缓冲器和传感器由两个磁畴的磁条组成,两个磁畴被磁畴壁隔开。畴壁可以被流过相邻自旋霍尔金属的电流移动,从而导致接收器电阻的变化。使用简单的CMOS组件即可轻松检测到此电阻变化。通过引入用于ST传感器互连的缓冲,所提出的方法可以高效地优化较长的全局片上或片外线路的能量延迟性能。我们的仿真结果表明,对于采用45 nm CMOS技术的10 mm线路,采用ST传感的能耗约为全摆幅的2%,而低摆幅CMOS互连的能耗约为4%。此外,延迟远低于低摆幅,并且可与全摆幅CMOS设计相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号