首页> 外文期刊>Machine Learning >An improved multiclass LogitBoost using adaptive-one-vs-one
【24h】

An improved multiclass LogitBoost using adaptive-one-vs-one

机译:改进的多类LogitBoost,使用自适应一对一

获取原文
获取原文并翻译 | 示例
       

摘要

LogitBoost is a popular Boosting variant that can be applied to either binary or multi-class classification. From a statistical viewpoint LogitBoost can be seen as additive tree regression by minimizing the Logistic loss. Following this setting, it is still non-trivial to devise a sound multi-class LogitBoost compared with to devise its binary counterpart. The difficulties are due to two important factors arising in multiclass Logistic loss. The first is the invariant property implied by the Logistic loss, causing the optimal classifier output being not unique, i.e. adding a constant to each component of the output vector won't change the loss value. The second is the density of the Hessian matrices that arise when computing tree node split gain and node value fittings. Oversimplification of this learning problem can lead to degraded performance. For example, the original LogitBoost algorithm is outperformed by ABC-LogitBoost thanks to the latter's more careful treatment of the above two factors. In this paper we propose new techniques to address the two main difficulties in multiclass LogitBoost setting: (1) we adopt a vector tree model (i.e. each node value is vector) where the unique classifier output is guaranteed by adding a sum-to-zero constraint, and (2) we use an adaptive block coordinate descent that exploits the dense Hessian when computing tree split gain and node values. Higher classification accuracy and faster convergence rates are observed for a range of public data sets when compared to both the original and the ABC-LogitBoost implementations. We also discuss another possibility to cope with LogitBoost's dense Hessian matrix. We derive a loss similar to the multi-class Logistic loss but which guarantees a diagonal Hessian matrix. While this makes the optimization (by Newton descent) easier we unfortunately observe degraded performance for this modification. We argue that working with the dense Hessian is likely unavoidable, therefore making techniques like those proposed in this paper necessary for efficient implementations.
机译:LogitBoost是一种流行的Boosting变体,可以应用于二进制或多类分类。从统计角度来看,LogitBoost可以看作是通过最小化Logistic损失来进行加性树回归。按照此设置,与设计其二进制副本相比,设计声音多类LogitBoost仍然是不平凡的。困难归因于多类Logistic损失中产生的两个重要因素。第一个是Logistic损失所隐含的不变属性,导致最优分类器输出不是唯一的,即,向输出向量的每个分量添加一个常量不会改变损失值。第二个是计算树节点拆分增益和节点值拟合时出现的黑森州矩阵的密度。过度简化此学习问题可能会导致性能下降。例如,原始的LogitBoost算法在性能上优于ABC-LogitBoost,这要归功于后者对以上两个因素的谨慎处理。在本文中,我们提出了解决多类LogitBoost设置中的两个主要困难的新技术:(1)我们采用向量树模型(即每个节点值都是向量),其中通过添加零和来保证唯一分类器输出约束,以及(2)我们使用自适应块坐标下降,在计算树拆分增益和节点值时利用密集的Hessian。与原始和ABC-LogitBoost实施相比,对于一系列公共数据集,观察到更高的分类精度和更快的收敛速度。我们还讨论了应对LogitBoost的密集Hessian矩阵的另一种可能性。我们得出的损失类似于多类Logistic损失,但它保证了对角Hessian矩阵。虽然这使优化(通过牛顿下降法)更容易,但不幸的是,我们注意到此修改的性能下降。我们认为,使用密集的Hessian可能是不可避免的,因此使像本文中提出的技术对于有效实现是必要的。

著录项

  • 来源
    《Machine Learning》 |2014年第3期|295-326|共32页
  • 作者

    Peng Sun; Mark D. Reid; Jie Zhou;

  • 作者单位

    Tsinghua National Laboratory for Information Science and Technology(TNList), Department of Automation, Tsinghua University, Beijing 100084, China;

    Research School of Computer Science, The Australian National University and NICTA, Canberra, ACT, Australia;

    Tsinghua National Laboratory for Information Science and Technology(TNList), Department of Automation, Tsinghua University, Beijing 100084, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    LogitBoost; Boosting; Ensemble; Supervised learning; Convex optimization;

    机译:LogitBoost;助推;合奏;监督学习;凸优化;
  • 入库时间 2022-08-17 13:04:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号