首页> 外文期刊>Lithology and mineral resources >Polygenic Nature of Granite Clastites: Communication 2. Secondary and Supergene Reworking of Granitic Clastites
【24h】

Polygenic Nature of Granite Clastites: Communication 2. Secondary and Supergene Reworking of Granitic Clastites

机译:花岗岩岗石的多基因性质:交流2.花岗岩岗石的二次和超基因改造

获取原文
获取原文并翻译 | 示例
       

摘要

Clastogenic rocks spatially associated with granite massifs have been reported in the geological literature from different regions: Caucasus (Leonov, 1974, 1991), Urals (Puchkov, 1968), Kazakhstan (Svar-ichevskaya and Skublova, 1973), Transbaikal region (Leonov, 2008; Lobanov et al., 1991), Tien Shan (Leonov et al., 2008), North America (Beroush, 1991; Lukin, 1989, 2007; Pippin, 1973). In some places, they represent crushed rocks of indigenous massifs. In other places, they make up accumulations and aprons of clastic products of the granitic composition both on the surface and beneath the sedimentary cover. In the first communication (Leonov et al., 2014) devoted to the origin of granite clastites, we examined specific features of the structure and evolution of granite bodies at the posthumous development stage, i.e., after cooling and introduction into the consolidated layer of the Earth's crust. It was shown that such rocks are formed at least due to two main processes: supergene (chemical and physical weathering) and tectonic (prototectonics and posthumous disintegration). Although the rocks are highly similar in composition, structure, and bedding conditions, they are marked by several specific features described in the first communication that provide insight into their genetic nature. However, the problem of morphostructural characteristics and genetic interpretation of granite clastites cannot be closed here. Reconstruction of the "primary" origin of clastic granitic bodies in some, far from single, cases is complicated by the following fact: the exhumed massifs of tectonically disintegrated granitoids undergo supergene transformations, while sediments in the weathering crust are involved in tectonic reworking. Thus, clastites can be formed in several stages with different successions of events: supergene processes (formation of the weathering crust) can precede the tectonic reworking of rocks or succeed the formation of tectonomixtites. Determination of diagnostic properties of genetically different clastic rocks and stages of their lithostructural alteration is important for solving the issues of regional geology, development of methods for the study of genetically complex sequences, as well as paleogeographic and pale-otectonic reconstructions. This problem acquires a specific importance because of two circumstances: first, its solution is at the intersection of two geological disciplines (lithology and tectonics); second, granitic clas-tite bodies often represent commercial hydrocarbon reservoirs (Areshev et al., 1997; Gavrilov, 2000; Izotov et al., 2003; Lobanov et al., 1991; Lobusev et al., 2002; Lukin, 2007; Martynova, 2002; Pippin, 1973; Sitdikova and Izotov, 2002). Let us discuss two scenarios of the succession of events: scenario 1-"tectonic mixtite"→ "supergene reworking"; scenario 2-"weathering crust"→"tectonic reworking". All other versions are combinations of these two types.
机译:在不同地区的地质文献中已经报道了与花岗岩质块在空间上相关的成岩岩石,这些地区的地质资料来自:高加索地区(Leonov,1974年,1991年),乌拉尔山脉(Puchkov,1968年),哈萨克斯坦(Svar-ichevskaya和Skublova,1973年),跨贝加尔地区(Leonov, 2008; Lobanov等,1991),天山(Leonov等,2008),北美(Beroush,1991; Lukin,1989,2007; Pippin,1973)。在某些地方,它们代表了土著地块的碎石。在其他地方,它们在沉积覆盖物的表面和下方组成花岗岩成分碎屑产物的堆积物和围裙。在第一个关于花岗岩碎屑岩起源的信息交流中(Leonov等,2014),我们研究了遗骸发育阶段即冷却后引入花岗岩固结层后花岗岩体结构和演化的特定特征。地球的地壳。结果表明,这类岩石至少是由于两个主要过程形成的:超基因(化学和物理风化)和构造(原构造和死后崩解)。尽管这些岩石在成分,结构和层理条件上极为相似,但它们的特征是首次交流中描述的几个特定特征,这些特征可以洞悉其遗传性质。然而,花岗岩碎屑岩的形态结构特征和遗传解释问题在这里无法解决。在一些情况下,碎屑花岗岩体的“主要”起源的重建由于以下事实而变得复杂:以下事实使构造崩解的花岗岩体的掘出的地块经历超基因改造,而风化壳中的沉积物参与了构造改造。因此,可以在具有不同连续事件的几个阶段中形成裂变岩:表生过程(风化壳的形成)可以先于岩石的构造改造,也可以继而形成构造混合岩。确定遗传上不同的碎屑岩的诊断特性及其岩石构造变化的阶段,对于解决区域地质问题,研究遗传复杂序列的方法以及古地理和古构造的重建至关重要。由于两种情况,该问题具有特殊的重要性:首先,其解决方案处于两个地质学科(岩性和构造学)的交叉点;第二,花岗岩类的碎屑岩体通常代表着商业性的油气藏(Areshev等,1997; Gavrilov,2000; Izotov等,2003; Lobanov等,1991; Lobusev等,2002; Lukin,2007; Martynova ,2002;皮平,1973;西迪科娃和伊佐托夫,2002)。让我们讨论事件继承的两种情况:情况1-“构造混合体”→“超基因改造”;场景2:“风化壳”→“构造改造”。所有其他版本都是这两种类型的组合。

著录项

  • 来源
    《Lithology and mineral resources》 |2014年第2期|184-200|共17页
  • 作者单位

    Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia;

    Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia;

    Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia;

    Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia;

    Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:31:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号