首页> 外文期刊>Life Sciences in Space Research >Optimized crop growth area composition for long duration spaceflight
【24h】

Optimized crop growth area composition for long duration spaceflight

机译:优化的作物生长区域组成长时间空间

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper presents an optimized composition of crop growth areas for biological life support systems with respect to nutrition and equivalent system mass. For this purpose, crop growth area compositions from literature are compared with compositions derived from an optimization algorithm. The optimization algorithm uses literature data for crop growth rates and crop nutrient content to minimize the required crop growth area required to supply all nutrients for a human. The algorithm derives the required crop growth area per crew member under different dietary boundary conditions and the resulting nutrient supply is compared to reported diets from crops for spaceflight. The primary goal of this optimization is to find the minimal area required to supply all relevant macronutrients. The minimal area for the exact desired composition of macronutrients (carbohydrates, fats and proteins) was 106.86 m(2) using chard, lettuce, peanut, bell pepper, snap beans and spinach. If a deviation in the macronutrient composition is allowed the required area can be reduced to 39.88 m(2) of wheat and white potatoes. Since the variety of crops is a relevant factor for long term food supply, a limit of the maximum growth area per crop was introduced to derive a diet with more variety, which resulted in a minimal area of 57.04 m(2) using drybean, rice, snap beans, sweet potato, wheat and white potato. Based on this result, a further manual adjustment of the crop growth areas was performed to also introduce lettuce and tomato in the crops provided and adjust the remaining crop compositions to receive better macro- and micronutrient conformity while maintaining a crop growth area of 57 m(2). One major result of this analysis is that soybeans are not the most favorable crop with regard to protein and fat productivity and the focus of NASA crop selection for full nutrient supply on soybean results in exceedingly large required crop areas of 164.15 m(2). The resulting crop growth areas from both the optimization and literature are then analyzed as plant growth chambers (PGC) in the Life Support Trade-Off Tool (LiSTOT) of the institute of astronautic from the Technical University of Munich (TUM). LiSTOT calculates the impact of the PGC on an ISS based environmental control and life support system (ECLSS) using averaged steady state values for the plants from literature. Based on this result LiSTOT scales the physical chemical systems and calculates the resulting equivalent system mass (ESM) of the different cases. This approach allows the consideration of not only the PGC ESM, but also the impacts the PGC has on other ECLSS systems and their ESM. The ESM values for PGC were updated to assume LEDs instead of high pressure sodium lamps resulting in a new logistic mass of the PGC of 1.28 kg/(y m(2)) and a lower specific system mass of 87.7 kg/ m(2). The mass balance analysis of carbon within the overall ECLSS lead to a reduction of the plant growth area to 50.6 m(2) and the break-even time with the ISS ECLSS was calculated to 87.2 years. With more optimistic assumptions for the LED and using urine as nutrient supply this time can be reduced to 14.6 years. The analysis also showed that the derived crop composition is not only favorable regarding nutrient supply but also with regard to the ESM and break-even time compared to previously reported crop compositions. Only the PGC with only wheat and white potatoes has a lower ESM but also provides a less balanced nutrient supply.This PGC is downscaled to 37.55 m(2) to achieve carbon balance and a break-even time of 38.4 years or 10.3 years with the optimistic assumptions.
机译:本文为营养和等效体系质量呈现了用于生物寿命支持系统的农作物生长区域的优化组成。为此目的,将来自文献的作物生长区域组成与来自优化算法的组合物进行比较。优化算法使用作物生长速率和作物营养含量的文献数据,以最小化供应人类所有营养素所需的所需作物生长区域。该算法在不同的膳食边界条件下产生了每船员所需的作物生长面积,并将得到的营养供应与报告的营养供应进行了比较,从而报告了空云作物的饮食。这种优化的主要目标是找到提供所有相关MACRORURIERS所需的最小区域。使用甜菜,莴苣,花生,甜椒,卡扣豆和菠菜,为106.86米(2)的最小面积为106.86米(2)。如果允许MACRONURICT成分的偏差被允许,所需区域可以减少到39.88米(2)的小麦和白色土豆。由于各种作物是长期食品供应的相关因素,因此引入了每种作物的最大增长面积的极限,以导致更多种类的饮食,导致使用Dirdbean的最小面积为57.04米(2) ,豌豆,甘薯,小麦和白色土豆。基于该结果,进行了进一步的手动调节作物生长区域,也进行了在提供的作物中引入莴苣和番茄,并调整剩余的作物组合物,以获得更好的宏观和微量营养素,同时保持57米的作物生长面积( 2)。该分析的一个主要结果是大豆不是关于蛋白质和脂肪生产率最有利的作物,并且NASA作物选择对大豆的全部营养供应的焦点导致164.15米(2)的超大所需作物。然后,从慕尼黑技术大学(Tum)的宇航员研究所的生命支持权衡工具(Listot)中得到了从优化和文献中的作物生长区域被分析为植物生长室(PGC)。 Listot计算PGC对基于ISS的环境控制和生命支持系统(ECLS)的影响,使用文献的植物的平均稳态值。基于该结果,Listot缩放了物理化学系统,并计算了不同情况的所得到的等效系统质量(ESM)。这种方法允许考虑PGC ESM,但也可以影响PGC对其他ECLS系统及其ESM的影响。更新PGC的ESM值以假设LED而不是高压钠灯,导致PGC的新逻辑质量为1.28千克/(2))和87.7kg / m(2)的较低的特定系统质量。总ECLS内的碳的质量平衡分析导致植物生长面积的减少至50.6米(2),并计算出IS eCLS的休息时间为87.2岁。随着LED的更乐观假设和使用尿液作为营养供应,这次可以减少到14.6岁。该分析还表明,与先前报道的作物组合物相比,衍生的作物组合物不仅有利于营养供应,而且关于ESM和断裂时间。只有小麦和白色土豆的PGC只有较低的ESM,但也提供了较少的平衡营养供应。该PGC落在37.55米(2)中,以获得碳平衡和休息时间为38.4岁或10吨。乐观假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号