首页> 外文期刊>The Korean journal of chemical engineering >Kinetic mechanism of dimethyl ether production process using syngas from integrated gasification combined cycle power plant
【24h】

Kinetic mechanism of dimethyl ether production process using syngas from integrated gasification combined cycle power plant

机译:整体气化联合循环电厂合成气生产二甲醚的动力学机理

获取原文
获取原文并翻译 | 示例
           

摘要

In a 1-step synthesis gas-to-dimethyl ether process, synthesis gas is converted into dimethyl ether (DME) in a single reactor. Three reactions are involved in this process: methanol synthesis, methanol dehydration and water gas shift, which form an interesting reaction network. The interplay among these three reactions results in excellent syngas conversion or reactor productivity. The higher syngas conversion or reactor productivity in the syngas-to-DME reaction system, compared to that in the syngas-to-methanol reaction system, is referred to as chemical synergy. This synergy exhibits a strong dependence on the composition of the reactor feed. To demonstrate the extent of this dependence, simulations with adjusted activity for each reaction were performed to reveal the relative rate of each reaction. The results show that the water gas shift reaction is the most rapid, being practically controlled by the equilibrium. Both methanol synthesis and methanol dehydration reactions are kinetically controlled. The role of the dehydration reaction is to remove the equilibrium barrier for the methanol synthesis reaction. However, the role of the water gas shift reaction is more complex; it helps the kinetics of methanol dehydration by keeping the water concentration low, which in turn enhances methanol synthesis. It also readjusts the H_2: CO in the reactor as the reactions proceed. In the CO-rich regime, the water gas shift reaction supplements the limiting reactant and H_2 by reacting water with CO. This enhances both the kinetics and thermodynamic driving force of the methanol synthesis reaction. In the H_2-rich regime, water gas shift consumes the limiting reactant, CO, which harms both the kinetics and thermodynamics of methanol synthesis. An understanding of these complex roles of the methanol dehydration and water gas shift reactions and of their dependence on the syngas composition explains why the synergy is high in the CO-rich regime, but decreases with the increasing H_2 or CO_2 content in the reactor feed. The analysis shows that the optimal H_2: CO for the LPDME reactor is around 1-to-l, in good agreement with the results from the simulation. While the 1-to-l feed provides a good foundation for some process configurations, it does not match the composition of syngas, which typically has a H_2: CO of 3 : 1 or greater.
机译:在1步合成气制二甲醚工艺中,合成气在单个反应器中转化为二甲醚(DME)。该过程涉及三个反应:甲醇合成,甲醇脱水和水煤气变换,这形成了有趣的反应网络。这三个反应之间的相互作用导致出色的合成气转化率或反应器生产率。与合成气-甲醇反应系统相比,合成气-DME反应系统中更高的合成气转化率或反应器生产率称为化学协同作用。这种协同作用表现出对反应器进料组成的强烈依赖性。为了证明这种依赖性的程度,对每个反应进行了活性调节的模拟,以揭示每个反应的相对速率。结果表明,水煤气变换反应最快,实际上受平衡控制。甲醇合成和甲醇脱水反应都是动力学控制的。脱水反应的作用是消除甲醇合成反应的平衡壁垒。但是,水煤气变换反应的作用更为复杂。它通过保持较低的水浓度来帮助甲醇脱水的动力学,进而增强了甲醇的合成。随着反应的进行,它还会重新调节反应器中的H_2:CO。在富CO态下,水煤气变换反应通过使水与CO反应来补充极限反应物和H_2。这既增强了甲醇合成反应的动力学,也增强了热力学驱动力。在富含H_2的状态下,水煤气变换消耗了限制反应物CO,这会损害甲醇合成的动力学和热力学。对甲醇脱水和水煤气变换反应的这些复杂作用及其对合成气组成的依赖性的理解解释了为什么在富含CO的过程中协同作用很高,但随着反应器进料中H_2或CO_2含量的增加而降低。分析表明,LPDME反应器的最佳H_2:CO为1比1,与模拟结果吻合良好。虽然一对一进料为某些工艺配置提供了良好的基础,但它与合成气的组成不匹配,合成气的H_2:CO通常为3:1或更高。

著录项

  • 来源
    《The Korean journal of chemical engineering》 |2014年第12期|2130-2135|共6页
  • 作者单位

    Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro, Jung-gu, Seoul 100-715, Korea;

    Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro, Jung-gu, Seoul 100-715, Korea;

    Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro, Jung-gu, Seoul 100-715, Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dimethyl Ether; LPMEOH; LPDME;

    机译:二甲醚;LPMEOH;LPDME;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号