...
首页> 外文期刊>Journal of Volcanology and Geothermal Research >Propagation of acoustic waves in a viscoelastic two-phase system: influence of gas bubble concentration
【24h】

Propagation of acoustic waves in a viscoelastic two-phase system: influence of gas bubble concentration

机译:声波在粘弹性两相系统中的传播:气泡浓度的影响

获取原文
获取原文并翻译 | 示例

摘要

Volcanic explosions generate pressure perturbations in the atmosphere and a seismic wavefield in the ground. The source is therefore well coupled with the atmosphere and the ground. The acoustic and elastic wavefields reflect dynamical processes at the source and the viscoelastic properties of the magma-gas medium. At low pressure (< 10 MPa), magma cannot be considered as a homogeneous medium, and must be treated as a mixture of fluid magma and gas bubbles. Acoustic waves are strongly affected by the transmission properties of the magma-gas medium. We analyze the propagation of the acoustic wavefield in a two-phase medium in which the viscosity and compressibility are spatially inhomogeneous. Gas bubble nucleation starts when the magma pressure drops below the supersaturation level (at a depth of a few hundred m for H_2O in basaltic magmas) and the gas-volume fraction increases toward the surface, reaching its maximum value at the magma-air interface. The variation of gas-volume fraction is non-linear with depth and is particularly strong at shallow depths (< 50 m). Density and sound velocity of the mixture drop drastically and the shear viscosity of the mixture increases with decreasing depth. Under these conditions, we tested if the propagation of an acoustic wavefield generated by a source embedded in the magma column can generate an infrasonic wavefield in the atmosphere. The acoustic wavefield in the magma is here modeled as function of the void fraction in the magma and resonance is considered to be induced only by body-wave. Large gas bubble concentrations (>70%) strongly affect the propagation properties of the acoustic wavefield. We found that the amplitude of the infrasonic wavefield in the atmosphere typically recorded in case of strombolian explosions (2 x 105 Pa) can be explained by a deep (>50 m) source embedded in the magma conduit only if a very large unrealistic pressure drop (1013 Pa) is assumed. The strong damping, linked to the poor elastic properties of the shallow magma-gas mixture, prevents the efficient propagation of the acoustic waves in the magma-gas mixture, and resonance of body waves cannot occur. Infrasonic waves can be transmitted from the magma to the atmosphere only when the source is very shallow (< 10 m). In conclusion, we neglect the possibility that resonance of body waves can induce infrasonic waves in the atmosphere. Moreover, we introduce new evidence of a strong attenuation induced by the shear viscosity on the propagation of elastic waves in a gas-rich magma. We believe that this latter result could have also a large impact-on all the theories based on the resonance of elastic waves in a conduit as model to explain tremor and/or LP events on volcanoes.
机译:火山爆炸在大气中产生压力扰动,并在地面产生地震波场。因此,源与大气和地面良好耦合。声波场和弹性波场反映了岩浆气介质的源动力过程和粘弹性。在低压(<10 MPa)下,岩浆不能被视为均质介质,必须将其视为流体岩浆和气泡的混合物。岩浆气体介质的传输特性强烈影响声波。我们分析了声波场在粘度和可压缩性在空间上是不均匀的两相介质中的传播。当岩浆压力下降到过饱和水平以下时(在玄武岩浆中H_2O在几百m的深度处),气泡成核开始,并且气体体积分数朝着地表增加,在岩浆-空气界面达到最大值。气体体积分数的变化随深度呈非线性变化,在浅深度(<50 m)尤其明显。混合物的密度和声速急剧下降,并且混合物的剪切粘度随着深度的减小而增加。在这些条件下,我们测试了由嵌在岩浆柱中的声源产生的声波场的传播是否可以在大气中产生次声波场。此处将岩浆中的声波场建模为岩浆中空隙率的函数,并且认为共振仅由体波引起。较大的气泡浓度(> 70%)会严重影响声波场的传播特性。我们发现,只有在发生巨大的不切实际的压降时,才能通过嵌在岩浆管道中的深层(> 50 m)源来解释通常在发生爆炸性爆炸(2 x 105 Pa)的情况下在大气中次声波场的振幅。假定为(1013 Pa)。与浅岩浆气体混合物较差的弹性有关的强阻尼会阻止声波在岩浆气体混合物中的有效传播,并且不会发生体波共振。仅当辐射源非常浅(<10 m)时,次声波才能从岩浆传输到大气。总之,我们忽略了体波共振会在大气中诱发次声波的可能性。此外,我们引入了新的证据,表明剪切粘度对富气岩浆中弹性波的传播引起强烈衰减。我们认为,基于导管中弹性波的共振作为解释火山震颤和/或LP事件的模型,后一结果也可能对所有理论产生重大影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号