首页> 外文期刊>Journal of Volcanology and Geothermal Research >Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma
【24h】

Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma

机译:带有气泡超压积累和通过渗透性岩浆的气体损失的火山岩导管内部岩浆流动的动力学

获取原文
获取原文并翻译 | 示例
       

摘要

Many volcanic eruptions show transitions between extrusive and explosive behaviour. We develop a new generic model that considers concurrence between pressure buildup in the bubbles due to the viscous resistance to their growth and gas escape through the bubble network as they become interconnected. When the pressure difference between bubbles and magma reaches the strength of the material fragmentation occurs. The effect of grain size distribution on the flow in gas-particle dispersion is modelled by two populations of particles which strongly influence the velocity of sound in the mixture. Solutions to the steady-state boundary value problem show non-uniqueness. There are at least two regimes for the fixed parameters in the magma chamber. In the low discharge rate regime, fragmentation does not occur and magma rises with partial gas escape. This regime corresponds to extrusive activity. The upper regime corresponds to explosive activity. The simulations using the parameters defined at the workshop produced the following results for a rhyolitic magma composition: discharge rate 5.5 x 10~7 kg/s; fragmentation at depth of 2585 m with magma vesicularity of 0.74; exit gas velocity varies from 200 to 450 m/s depending on the mass fraction of small particles in the fragmented mixture; exit pressure is in the range 1.5 to 3 MPa. Variation of conduit diameter d in the range 40 to 70 m gives a mass flow rate Q which depends on the diameter as d~(2.8), less strongly than for the case of viscous flow of Newtonian liquid in a cylindrical pipe where Q~d~4. With the increase in conduit diameter, fragmentation happens later in the flow and conduit resistance remains high. Changes in magma temperature from 700 to 950℃ lead to increase in discharge rate only by a factor of 4 whereas viscosity decreases by more then 8000 times.
机译:许多火山喷发显示出挤压行为和爆炸行为之间的过渡。我们开发了一个新的通用模型,该模型考虑了由于对气泡生长的粘性阻力而导致的气泡压力累积与气泡相互连接时通过气泡网络逸出的气体之间的并发性。当气泡和岩浆之间的压力差达到材料强度时,就会发生碎裂。粒度分布对气体-颗粒分散体中流动的影响是通过两个粒子群模拟的,这两个粒子群强烈影响混合物中的声速。稳态边值问题的解决方案显示出非唯一性。岩浆室内的固定参数至少有两种情况。在低排放率状态下,不会发生碎裂,并且岩浆会随部分气体逸出而上升。这种制度对应于挤压活动。上层政权对应于爆炸活动。使用车间定义的参数进行的模拟对流纹岩浆成分产生了以下结果:排放速率5.5 x 10〜7 kg / s; 2585 m深度破碎,岩浆囊泡度为0.74。出口气体的速度从200到450 m / s不等,具体取决于碎片混合物中小颗粒的质量分数。出口压力为1.5至3 MPa。管道直径d在40到70 m范围内变化,得出质量流量Q,该质量流量Q取决于直径d〜(2.8),其强度要小于Q到d的圆柱管中牛顿液体粘性流动的情况。 〜4。随着导管直径的增加,碎裂会在流动后期发生,导管阻力仍然很高。岩浆温度从700到950℃的变化导致排放速率仅增加了4倍,而粘度则下降了8000倍以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号