...
首页> 外文期刊>Journal of Volcanology and Geothermal Research >Catastrophic caldera-forming eruptions: Thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth
【24h】

Catastrophic caldera-forming eruptions: Thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth

机译:灾难性火山口形成爆发:地球上火山爆发触发和最大火山口尺寸的热力学及其影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Approximately every 100,000 years the Earth experiences catastrophic caldera-forming "supereruptions" that are considered to be one of the most hazardous natural events on Earth. Utilizing new temperature-dependent, viscoelastic numerical models that incorporate a Mohr-Coulomb failure criterion, we find that eruptive failure of the largest magma chambers is a function of the geometry of the overlying roof and the location of the brittle-ductile transition. In particular, the ductile halo created around the hot magma chamber buffers increasing overpressures and prevents pressure relief via magmatic injection from the magma chamber. The numerical results indicate that as chamber volume increases, the higher temperatures in the host rock and the decrease in the roof aspect ratio cause a shift from reservoir-triggered eruption to an external roof-triggered mechanism. Specifically, as overpressure increases within the largest magma chambers, extensive uplift in the overlying roof promotes the development of through-going faults that may trigger eruption and caldera collapse from above. We find that for magma chamber volumes > 10~3 km~3, and roof aspect ratios (depth/width)< 0.3, moderate magma chamber overpressures (<30 MPa) will cause extensive through-going fault development in the overlying roof. This result indicates an external mechanism, caused by fault propagation in the roof, is a likely trigger for the largest caldera forming eruptions. The thermomechanical models also provide an estimate of the maximum size of magma chamber growth in a pristine host material and, thus, an estimate of the maximum size of the resultant caldera. We find a maximum reservoir volume range of 10~4-10~5 km~3 for shallow crustal magma chambers emplaced at depths to the top of the magma chamber of 3-7 km. These volumes produce maximum caldera areas of 10~3-10~4km~2, comparable to the largest calderas observed on Earth (e.g., Toba). These thermomechanical models offer critical new insight into the mechanics of catastrophic caldera collapse and provide a numerical construct for predicting how eruption is triggered in the largest crustal magma chambers.
机译:大约每100,000年,地球经历一次灾难性火山口形成的“超爆发”,这被认为是地球上最危险的自然事件之一。利用结合了摩尔-库仑破坏准则的依赖温度的新粘弹性数值模型,我们发现最大岩浆室的爆发破坏是上覆顶盖的几何形状和脆性-延性转变位置的函数。尤其是,围绕热岩浆室形成的延展性光环可以缓冲不断增加的超压,并防止通过从岩浆室进行岩浆注入而释放压力。数值结果表明,随着腔室容积的增加,主体岩石中的较高温度和顶板纵横比的减小会导致从储层触发的喷发转变为外部顶板触发的机制。特别是,随着最大岩浆室内的超压增加,上覆顶板的大范围隆升促进了贯穿的断层的发展,这些断层可能触发喷发和火山口从上方塌陷。我们发现,对于岩浆室体积> 10〜3 km〜3,且顶板纵横比(深度/宽度)<0.3,适度的岩浆室超压(<30 MPa)将导致上覆顶板全面贯穿断层发育。该结果表明,由屋顶上的断层传播引起的外部机制可能是最大火山口形成爆发的触发因素。热力学模型还提供了原始基质材料中岩浆腔室生长的最大尺寸的估算值,因此也提供了所得火山口的最大尺寸的估算值。我们发现,浅层岩浆房的最大储层体积范围为10〜4-10〜5 km〜3,位于深部岩浆室顶部3-7 km。这些体积产生的破火山口最大面积为10〜3-10〜4km〜2,与地球上观察到的最大破火山口(例如鸟羽)相当。这些热力学模型为灾难性破火山口塌陷的机理提供了重要的新见解,并提供了一种数值结构,可用来预测在最大的地壳岩浆室内如何触发喷发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号