首页> 外文期刊>Journal of Volcanology and Geothermal Research >Combined effects of total grain-size distribution and crosswind on the rise of eruptive volcanic columns
【24h】

Combined effects of total grain-size distribution and crosswind on the rise of eruptive volcanic columns

机译:总粒度分布和侧风对火山喷发柱上升的综合影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The maximum height of an explosive volcanic column, H, depends on the 1/4th power of the eruptive mass flux, Q, and on the 3/4th power of the stratification of the atmosphere, N. Expressed as scaling laws, this relationship has made H a widely used proxy to estimate Q. Two additional effects are usually included to produce more accurate and robust estimates of Q based on H: particle sedimentation from the volcanic column, which depends on the total grain-size distribution (TGSD) and the atmospheric crosswind. Both coarse TGSD and strong crosswind have been shown to decrease strongly the maximum column height, and TGSD, which also controls the effective gas content in the column, influences the stability of the column. However, the impact of TGSD and of crosswind on the dynamics of the volcanic column are commonly considered independently. We propose here a steady-state 1D model of an explosive volcanic column rising in a windy atmosphere that explicitly accounts for particle sedimentation and wind together. We consider three typical wind profiles: uniform, linear, and complex, with the same maximum wind velocity of 15 m s(-1). Subject to a uniform wind profile, the calculations show that the maximum height of the plume strongly decreases for any TGSD. The effect of TGSD on maximum height is smaller for uniform and complex wind profiles than for a linear profile or without wind. The largest differences of maximum heights arising from different wind profiles are observed for the largest source mass fluxes (>10(7) kg s(-5)) for a given TGSD. Compared to no wind conditions, the field of column collapse is reduced for any wind profile and TGSD at the vent, an effect that is the strongest for small mass fluxes and coarse TGSD. Provided that the maximum plume height and the wind profile are known from real-time observations, the model predicts the mass discharge rate feeding the eruption for a given TGSD. We apply our model to a set of eight historical volcanic eruptions for which all the required information is known. Taking into account the measured wind profile and the actual TGSD at the vent substantially improves (by approximate to 30%) the agreement between the mass discharge rate calculated from the model based on plume height and the field observation of deposit mass divided by eruption duration, relative to a model taking into account TGSD only. This study contributes to the improvement of the characterization of volcanic source term required as input to larger scale models of ash and aerosol dispersion. (C) 2015 Elsevier B.V. All rights reserved.
机译:火山爆发柱的最大高度H取决于喷发质量通量Q的1/4次方,以及大气层化N的3/4次方。按比例定律表示,这种关系具有使得H成为广泛使用的Q值替代值。通常基于H得出另外两个效果,以产生更准确,更可靠的Q值:火山柱中的颗粒沉降,这取决于总粒度分布(TGSD)和大气侧风。已显示出粗TGSD和强侧风都会大大降低最大色谱柱高度,而TGSD也控制色谱柱中的有效气体含量,会影响色谱柱的稳定性。但是,通常独立考虑TGSD和侧风对火山柱动力学的影响。我们在这里提出一个在有风的大气层中上升的爆炸性火山柱的稳态一维模型,该模型明确地说明了颗粒沉降和风的共同作用。我们考虑了三种典型的风廓线:均匀,线性和复杂,相同的最大风速为15 m s(-1)。根据统一的风廓线,计算表明,对于任何TGSD,羽流的最大高度都会大大降低。对于均匀和复杂的风廓线,TGSD对最大高度的影响要小于线性风廓线或不带风的情况。对于给定的TGSD,对于最大的源质量通量(> 10(7)kg s(-5)),观察到了由不同风廓线引起的最大高度的最大差异。与无风情况相比,任何风廓线和排气孔处的TGSD都会降低柱塌陷的范围,这对于较小的质量通量和较粗的TGSD最为明显。如果从实时观测中知道了最大羽流高度和风廓线,则该模型将预测给定TGSD的喷发量。我们将模型应用于一组八次历史性火山喷发,这些火山喷发的所有必需信息均已知。考虑到测得的风廓线和出风口处的实际TGSD显着改善(大约提高了30%),该值是根据基于羽流高度的模型计算出的质量排放速率与沉积物的实地观测值除以喷发持续时间所得出的,相对于仅考虑TGSD的模型。这项研究有助于改进火山灰源术语的特征,这些术语是灰分和气溶胶弥散度较大模型的输入。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号