...
首页> 外文期刊>Journal of Vacuum Science & Technology >Study of the driving force for the self-assembly of heterojunction quantum dots (zero D molecules) using finite element analysis
【24h】

Study of the driving force for the self-assembly of heterojunction quantum dots (zero D molecules) using finite element analysis

机译:基于有限元分析的异质结量子点(零D分子)自组装的驱动力研究

获取原文
获取原文并翻译 | 示例
           

摘要

The formation and control of quantum dots have been the focus of considerable research. This research is largely motivated by the unique properties zero dimensional structure possess. During heteroepitaxy, quantum dots form through a self-assembly process in order to reduce the strain energy of the heteroepitaxial material while increasing the surface area. Using this procedure, quantum dots composed of many different materials have been formed on various substrates or buffer layers. These structures have been classified into two basic groups (type I and type II) based on how the dot band structure lines up relative to the surrounding barrier band structure. In the case of a type I quantum dot the dot band gap is contained within the energy range of the band gap of the barrier material. This arrangement is typical for In_xGa_(1-x)As on GaAs and InP. The other type of quantum dot, referred to as type II, indicates that the quantum dot band gap straddles the conduction band (or valence band) of the barrier layer, which is the case of GaSb or InP on GaAs. With this alignment, the hole (or electron) states are located in the quantum dot material while the other state is held in barrier region in the vicinity of the quantum dot through electrostatic interactions. Recently, the authors have shown that quantum dots structures can be formed through the self-assembly process that allow the zero-dimensional region to be composed of multiple materials which produce heterojunctions within the quantum dot structure. In these structures, the authors refer to the initial material as a quantum dot and the second material to be a quantum crown. In this article, they discuss various characteristics of these structures which can be utilized in the production of devices. In addition, they study the variation in strain energy for the nucleation and growth of the crown material on an existing quantum dot structure through finite element analysis. They find that even for compositions which have a significant difference in lattice constant from the existing quantum dot materials, an enhancement exists for nucleating the crown material on the existing quantum dot structure. In addition, by carefully selecting the composition (i.e., lattice constant) of the quantum crown material, the optimum location for nucleation can be controlled.
机译:量子点的形成和控制一直是大量研究的重点。这项研究很大程度上是由零维结构所具有的独特特性所推动的。在异质外延过程中,量子点通过自组装过程形成,以便在增加表面积的同时减少异质外延材料的应变能。使用该程序,在各种基板或缓冲层上形成了由许多不同材料组成的量子点。根据点带结构相对于周围的势垒带结构如何排列,这些结构已分为两个基本组(I型和II型)。在I型量子点的情况下,点带隙包含在势垒材料的带隙的能量范围内。对于GaAs和InP上的In_xGa_(1-x)As,这种布置是典型的。另一种类型的量子点,称为II型,表示量子点带隙跨在势垒层的导带(或价带)上,GaAs上的GaSb或InP就是这种情况。通过这种对准,空穴(或电子)状态位于量子点材料中,而另一种状态通过静电相互作用保持在量子点附近的势垒区域中。最近,作者已经表明,可以通过自组装过程形成量子点结构,该过程允许零维区域由多种在量子点结构内产生异质结的材料组成。在这些结构中,作者将初始材料称为量子点,将第二材料称为量子冠。在本文中,他们讨论了可在设备生产中使用的这些结构的各种特性。此外,他们通过有限元分析研究了在现有量子点结构上冠状材料的形核和生长所需的应变能变化。他们发现,即使对于与现有量子点材料的晶格常数有显着差异的成分,也存在使冠状材料在现有量子点结构上成核的增强作用。另外,通过仔细选择量子冠材料的组成(即,晶格常数),可以控制成核的最佳位置。

著录项

  • 来源
    《Journal of Vacuum Science & Technology》 |2010年第3期|P.C3C33-C3C36|共4页
  • 作者单位

    AFRL/RXPS, Wright Patterson AFB, Ohio 45433-7707;

    rnUniversity of Dayton, Dayton, Ohio 45469-0071;

    rnSouthwestern Ohio Council for Higher Education, Wright State University, Dayton, Ohio 45435;

    rnUTC, Dayton, Ohio 45432;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号