首页> 外文期刊>Journal of turbomachinery >Model Verification of Mist/Steam Cooling With Jet Impingement Onto a Concave Surface and Prediction at Elevated Operating Conditions
【24h】

Model Verification of Mist/Steam Cooling With Jet Impingement Onto a Concave Surface and Prediction at Elevated Operating Conditions

机译:雾/蒸汽在凹面上的冲击冷却模型验证,以及在升高的工作条件下的预测

获取原文
获取原文并翻译 | 示例
           

摘要

Internal mist/steam blade cooling technology is proposed for advanced gas turbine systems that use the closed-loop steam cooling scheme. Previous experiments on mist/steam heat transfer with a 2D slot jet impingement onto a concave surface showed cooling enhancement of up to 200% at the stagnation point by injecting approximately 0.5%- of mist under low temperature and pressure laboratory conditions. Realizing the difficulty in conducting experiments at elevated pressure and temperature working conditions, computational fluid dynamics (CFD) simulation becomes an opted approach to predict the potential applicability of the mist/steam cooling technique at real GT operating conditions. In this study, the CFD model is first validated within 3% and 6% deviations from experimental results for the flows of steam-only and mist/steam flow cases, respectively. The validated CFD model is then used to simulate a row of multiple holes impinging jet onto a concave surface under elevated pressure, temperature, and Reynolds number conditions. The predicted results show an off-center cooling enhancement with a local maximum of 100% at s/d =2 and an average cooling enhancement of about 50%. The mist cooling scheme is predicted to work better on a concave surface than on the flat surface. The extent of wall jet and the size of 3D recirculation zones are identified as a major influencing parameter on the curvature effect on mist cooling performance, the mist enhancement from a slot jet is more pronounced than a row of round jets. The effects of wall heat flux and mist ratio on mist cooling performance are also investigated in this study.
机译:对于使用闭环蒸汽冷却方案的高级燃气轮机系统,提出了内部雾气/蒸汽叶片冷却技术。先前在2D狭缝射流撞击到凹面上进行雾/蒸汽传热的实验表明,在低温和压力实验室条件下,通过注入约0.5%的雾,可以在停滞点将冷却增强高达200%。意识到在高温高压条件下进行实验的难度,计算流体力学(CFD)模拟成为预测雾气/蒸汽冷却技术在实际GT操作条件下的潜在适用性的一种可选方法。在这项研究中,首先针对仅蒸汽流和雾/蒸汽流情况,分别从实验结果的3%和6%偏差内验证了CFD模型。然后,将经过验证的CFD模型用于模拟在高压,高温和雷诺数条件下将射流撞击到凹面的一排多孔孔。预测结果显示偏心冷却增强,在s / d = 2时局部最大值为100%,平均冷却增强约为50%。预计雾冷却方案在凹形表面上比在平坦表面上更有效。壁式射流的范围和3D再循环区域的大小被确定为影响雾冷却性能的曲率影响的主要参数,狭缝射流的雾增强比一排圆形射流更明显。这项研究还研究了壁热通量和雾比对雾冷却性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号