首页> 外文期刊>Journal of turbomachinery >Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels- Part Ⅰ: Numerical Method
【24h】

Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels- Part Ⅰ: Numerical Method

机译:优化内部冷却通道压力损失的U型弯头-第一部分:数值方法

获取原文
获取原文并翻译 | 示例
           

摘要

This two-part paper addresses the design of a U-bend for serpentine internal cooling channels optimized for minimal pressure loss. The total pressure loss for the flow in a U-bend is a critical design parameter, as it augments the pressure required at the inlet of the cooling system, resulting in a lower global efficiency. In this first part of the paper, the design methodology of the cooling channel is presented. The minimization of the total pressure loss is achieved by means of a numerical optimization method that uses a metamodel-assisted differential evolution algorithm in combination with an incompressible Navier-Stokes solver. The profiles of the internal and external side of the bend are parameterized using piece-wise Bezier curves. This allows for a wide variety of shapes, respecting the manufacturability constraints of the design. The pressure loss is computed by the NavierStokes solver, which is based on a two-equation turbulence model and is available from the open source software OpenFOAM. The numerical method predicts an improvement of 36% in total pressure drop with respect to a circular U-bend, mainly due to the reduction of the separated flow region along the internal side of the bend. The resulting design is subjected to experimental validation, presented in Part Ⅱ of the paper.
机译:这篇分为两部分的文章介绍了蛇形内部冷却通道的U形弯头的设计,该设计优化了压力损失最小。 U形弯管中流动的总压力损失是一个关键的设计参数,因为它会增加冷却系统入口所需的压力,从而降低整体效率。在本文的第一部分中,介绍了冷却通道的设计方法。总压力损失的最小化是通过一种数值优化方法来实现的,该方法将元模型辅助的差分演化算法与不可压缩的Navier-Stokes求解器结合使用。弯曲的内侧和外侧的轮廓使用分段Bezier曲线进行参数设置。在考虑到设计的可制造性约束的情况下,这允许多种形状。压力损失由NavierStokes求解器计算,该求解器基于两方程湍流模型,可从开源软件OpenFOAM获得。数值方法预测,相对于圆形U形弯,总压降将提高36%,这主要是由于沿弯头内侧分离的流动区域减少了。所得设计经过实验验证,在本文的第二部分中进行了介绍。

著录项

  • 来源
    《Journal of turbomachinery》 |2013年第5期|051015.1-051015.10|共10页
  • 作者单位

    von Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Chaussee de Waterloo 72, Rhode-Saint-Genese 1640, Belgium;

    von Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Chaussee de Waterloo 72, Rhode-Saint-Genese 1640, Belgium,Mechanical Engineering Department, Stanford University, Stanford, CA;

    von Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Chaussee de Waterloo 72, Rhode-Saint-Genese 1640, Belgium,Tractable Engineering, Brussels, Belgium;

    von Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Chaussee de Waterloo 72, Rhode-Saint-Genese 1640, Belgium,Geosea NV, Zwijndrecht, Belgium;

    von Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Chaussee de Waterloo 72, Rhode-Saint-Genese 1640, Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号