...
首页> 外文期刊>Journal of turbomachinery >Two-scale methodology for URANS/Large eddy simulation solutions of unsteady turbomachinery flows
【24h】

Two-scale methodology for URANS/Large eddy simulation solutions of unsteady turbomachinery flows

机译:非定常涡轮机流动的URANS /大涡模拟解的两尺度方法

获取原文
获取原文并翻译 | 示例

摘要

A general issue in turbomachinery flow computations is how to capture and resolve two kinds of unsteadiness efficiently and accurately: (a) deterministic disturbances with temporal and spatial periodicities linked to blade count and rotational speed and (b) nondeterministic disturbances including turbulence and self-excited coherent patterns (e.g., vortex shedding, shear layer instabilities, etc.) with temporal and spatial wave lengths unrelated to blade count and rotational speed. In particular, the high cost of large eddy simulations (LES) is further compounded by the need to capture the deterministic unsteadiness of bladerow interactions in computational domains with large number of blade passages. This work addresses this challenge by developing a multiscale solution approach. The framework is based on an ensemble-averaging to split deterministic and nondeterministic disturbances. The two types of disturbances can be solved in suitably selected computational domains and solvers, respectively. The local fine mesh is used for nondeterministic turbulence eddies and vortex shedding, while the global coarse mesh is for deterministic unsteadiness. A key enabler is that the unsteady stress terms (UST) of the nondeterministic disturbances are obtained only in a small set of blade passages and propagated to the whole domain with many more passages by a block spectral mapping. This distinctive multiscale treatment makes it possible to achieve a high-resolution unsteady Reynolds-averaged Navier-Stokes (URANS)/LES solution in a multipassage/ whole annulus domain very efficiently. The method description will be followed by test cases demonstrating the validity and potential of the proposed methodology.
机译:涡轮机械流量计算中的一个普遍问题是如何高效,准确地捕获和解决两种不稳定因素:(a)具有与叶片数和转速相关的时间和空间周期性的确定性扰动,以及(b)包括湍流和自激的不确定性扰动时间和空间波长与叶片数和转速无关的相干模式(例如涡旋脱落,剪切层不稳定性等)。特别是,由于需要捕获大量叶片通道的计算域中的叶片行相互作用的确定性不稳定,进一步加剧了大型涡流模拟(LES)的高成本。这项工作通过开发多尺度解决方案方法来应对这一挑战。该框架基于整体平均以划分确定性干扰和非确定性干扰。可以分别在适当选择的计算域和求解器中求解这两种类型的干扰。局部细网格用于确定性湍流和涡旋脱落,而全局粗网格用于确定性不稳定。一个关键的推动力是,不确定性扰动的非稳态应力项(UST)仅在少数叶片通道中获得,并通过块光谱映射传播到更多通道中的整个域。这种独特的多尺度治疗方法可以非常有效地在多通道/整个环域中实现高分辨率的非稳态雷诺平均Navier-Stokes(URANS)/ LES解决方案。在方法描述之后,将通过测试用例证明所提出方法的有效性和潜力。

著录项

  • 来源
    《Journal of turbomachinery》 |2017年第10期|101012.1-101012.14|共14页
  • 作者

    He Li; Yi Junsok;

  • 作者单位

    Department of Engineering Science, University of Oxford, Oxford, United Kingdom;

    Department of Engineering Science, University of Oxford, Oxford, United Kingdom;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号